UPMC Master 1, MM05E Basic functional analysis 2011-2012

Continuous linear maps

1) Let $(E, \|\cdot\|_E)$ be a normed linear space of dimension N. Show that any weakly converging sequence in E is also strongly converging.

- 2) Let $(X, \|\cdot\|)$ be a real normed linear space
 - a) Show that for all $x \in X$, there exists $f \in X'$ such that f(x) = ||x|| and $||f||_{X'} = 1$. *Hint*: Use the Hahn-Banach Theorem.
 - b) Show that for all $x \in X$,

$$||x|| = \max_{f \in X', ||f|| \le 1} f(x) = \max_{f \in X', f \ne 0} \frac{f(x)}{||f||_{X'}}.$$

c) Deduce that X is isometrically isomorphic to a subspace of its bidual X'' := (X')' (*i.e.* there exists a subspace $\widetilde{X} \subset X''$ and a one to one linear continuous map $J : X \to \widetilde{X}$ such that $||J(x)||_{X''} = ||x||$ for all $x \in X$). When is \widetilde{X} closed?

<u>Remark</u>: If $\tilde{X} = X''$, we say that X is *reflexible*. In particular, uniformly convex Banach spaces or Hilbert spaces are reflexible.

- **3)** Let $(X, \|\cdot\|)$ be a normed linear space.
 - a) show that if $x_n \to x$, then $x_n \rightharpoonup x$ and $||x_n|| \to ||x||$.
 - b) Show that if $x_n \rightharpoonup x$, then

$$||x|| \le \liminf_{n \to \infty} ||x_n|$$

and that there exists a constant C > 0 such that $||x_n|| \leq C$ for all $n \in \mathbb{N}$.

c) Show that if X is uniformly convex, then

$$x_n \rightharpoonup x$$
 and $||x_n|| \rightarrow ||x|| \Rightarrow x_n \rightarrow x$.

4) Let $(X, \|\cdot\|)$ be a uniformly convex Banach space, and let $A \subset X$ be non empty closed and convex set.

a) Show that for all $x \in X$, there exists a unique $a_x \in A$ such that

$$||x - a_x|| = \operatorname{dist}(x, A) := \inf_{a \in A} ||x - a||$$

b) Show that the map $x \mapsto a_x$ is continuous.

5) Open mapping Theorem. Let E and F be two Banach spaces, and $\ell \in \mathcal{L}_c(E, F)$ be a surjective continuous map. Then ℓ is an open mapping, i.e., for every open set $U \subset E$, then $\ell(U)$ is open in F.

a) We denote by B_E and B_F the open unit balls in E and F respectively. Show that $\overline{\ell(B_E)}$ has non empty interior in F (we can consider $X_n := n \overline{\ell(B_E)}$).

b) Deduce that there exists r > 0, such that $2rB_F \subset \overline{\ell(B_E)}$.

c) Let $y \in rB_F$, show that there exists $x_1 \in \frac{1}{2}B_E$ such that $y_1 := y - \ell(x_1) \in \frac{r}{2}B_F$. Construct then two sequences (x_n) , (y_n) such that $x_n \in 2^{-n}B_E$ and $y_n = y_{n-1} - \ell(x_n) \in 2^{-n}rB_F$. Deduce that $y \in \ell(2B_E)$.

d) Show that

$$\exists r > 0, \ \forall y \in F, \|y\|_F < r, \exists x \in E, \|x\| < 2 \text{ and } \ell(x) = y.$$
(*)

Deduce that for each open set $U \subset E$, then $\ell(U)$ is open in F.

6) Banach Theorem. Let E and F be two Banach spaces and $\ell \in \mathcal{L}_c(E, F)$ be a linear one to one continuous map. Show that $\ell^{-1} \in \mathcal{L}_c(F, E)$, and that $\|\ell^{-1}\|_{\mathcal{L}_c(F, E)} \ge 1/\|\ell\|_{\mathcal{L}_c(E, F)}$.

7) Closed graph Theorem. Let E and F be two Banach spaces, and T be a linear map from E to F. We suppose that the graph of T, $G(T) := \{(x, Tx) : x \in E\}$ is a closed subset of $E \times F$. Then T is continuous.

- 8) Let F be a closed linear subspace of $\mathcal{C}([0,1])$ which is contained in $\mathcal{C}^1([0,1])$.
 - a) Show that the derivation map $D: f \in F \to f' \in \mathcal{C}([0,1])$ is continuos.
 - b) Deduce that F has finite dimension.

9) Grothendieck Theorem. Let (X, \mathfrak{M}) be a measure space and μ be a probability measure on \mathfrak{M} . Let S be a closed subspace of $L^p(X, \mu)$ (p > 0), contained in $L^{\infty}(X, \mu)$. Then S has finite dimension.

- a) Show that there exists a constant $K < \infty$ such that for all $f \in S$, then $||f||_{\infty} \leq K ||f||_p$.
- b) Deduce that there exists a constant $M < \infty$ such that for all $f \in S$, then $||f||_{\infty} \leq M ||f||_2$.
- c) Show that for $c := (c_1, \ldots, c_n) \in \mathbb{R}^n$ with $||c||_2 \leq 1$ and for ϕ_1, \ldots, ϕ_n orthonormal in S, then the function $f_c := \sum_{i=1}^n c_i \phi_i$ satisfies $||f_c||_{\infty} \leq M$.
- d) Deduce that there exists $X' \subset X$ with $\mu(X') = 1$ such that for all $c := (c_1, \ldots, c_n) \in \mathbb{R}^n$ with $\|c\|_2 \leq 1$ and for all $x \in X'$, one has $|f_c(x)| \leq M$.
- e) Conclude.