UPMC Master 1, MM05E

Lebesgue spaces

In the sequel, (X, \mathfrak{M}, μ) stands for a measure space.

- 1) Interpolation inequality. Let $1 \le p \le q \le +\infty$.
 - a) Show that if $f \in L^p(X,\mu) \cap L^q(X,\mu)$, then $f \in L^r(X,\mu)$ for all $r \in [p,q]$, and that

$$||f||_r \leq ||f||_p^{\alpha} ||f||_q^{1-\alpha}$$

where $\alpha \in [0, 1]$ is defined by $\frac{1}{r} = \frac{\alpha}{p} + \frac{1-\alpha}{q}$.

b) Show that if $\mu(X) < +\infty$ and $f \in L^p(X, \mu)$, then $f \in L^r(X, \mu)$ for all $r \in [1, p]$, and that there exists a constant C > 0 (independent of f) such that

$$||f||_r \le C ||f||_p.$$

2) Generalized Hölder inequality. Let $f_1 \in L^{p_1}(X,\mu), \ldots, f_k \in L^{p_k}(X,\mu)$ be such that

$$\frac{1}{p_1} + \dots + \frac{1}{p_k} =: \frac{1}{r} \le 1.$$

Show that the product $\prod_{i=1}^{k} f_i$ belongs to $L^r(X, \mu)$ and

$$\left\|\prod_{i=1}^{k} f_i\right\|_r \le \prod_{i=1}^{k} \|f_i\|_{p_i}$$

3) Let $1 \le p_0 < +\infty$.

a) Show that if $f \in L^{p_0}(X,\mu) \cap L^{\infty}(X,\mu)$, then

$$\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}.$$

- b) Let $f \in L^p(X,\mu)$ for all $p \in [p_0, +\infty)$ such that $||f||_p \to \infty$ as $p \to \infty$. Show that $f \notin L^\infty(X,\mu)$.
- c) Let $f \in L^p(X,\mu)$ for all $p \in [p_0,+\infty)$ such that $f \notin L^\infty(X,\mu)$. Show that $\|f\|_p \to \infty$ as $p \to \infty$.

4) Continuity of the translation in $L^p(\mathbb{R}^N)$. Let $X = \mathbb{R}^N$, $\mathfrak{M} = \mathcal{L}(\mathbb{R}^N)$ be the σ -algebra of all Lebesgue measurable subsets of \mathbb{R}^N , and $\mu = \mathcal{L}^N$ be the Lebesgue measure. Let $1 \leq p < \infty$ and $f \in L^p(\mathbb{R}^N)$. For each $h \in \mathbb{R}^N$, we define the translation of f by

$$\tau_h f(x) := f(x-h) \quad \forall x \in \mathbb{R}^N$$

Show that

$$\lim_{|h| \to 0} \|\tau_h f - f\|_p = 0.$$

5) Assume that μ is a probability measure, *i.e.*, $\mu(X) = 1$. Let $f: X \to [0, +\infty)$ be a function in $L^1(X, \mu)$.

- a) Using Hölder's inequality, show that if $\mu(\{f > 0\}) < 1$, then $\|f\|_p \to 0$ as $p \to 0$.
- b) Show that

$$\lim_{p\to 0}\int_X f^p\,d\mu=\mu(\{f>0\})$$

c) Show that for all $p \in (0, 1)$, and all $y \in (0, +\infty)$, then

$$\frac{|y^p - 1|}{p} \le y + |\log y|.$$

d) From now on, we assume that f > 0 on X, and that $\log f \in L^1(X, \mu)$. Show that

$$\lim_{p \to 0} \int_X \frac{f^p - 1}{p} \, d\mu = \int_X \log f \, d\mu.$$

e) Show that

$$\lim_{p \to 0} \|f\|_p = \exp\left(\int_X \log f \, d\mu\right).$$

6) Jensen's inequality. Assume that μ is a probability measure, *i.e.*, $\mu(X) = 1$. Let $\varphi : (a, b) \to \mathbb{R}$ be a convex function (with $-\infty \le a < b \le +\infty$).

a) Show that

$$\frac{\varphi(t) - \varphi(s)}{t - s} \le \frac{\varphi(u) - \varphi(t)}{u - t}$$

whenever a < s < t < u < b.

b) Deduce that φ is continuous, and that for each $s \in (a, b)$, there exists $\beta_s \in \mathbb{R}$ such that

$$\varphi(t) \ge \varphi(s) + \beta_s(t-s)$$

for every $t \in (a, b)$.

c) Let $f: X \to (a, b)$ such that $f \in L^1(X, \mu)$. Show that $\varphi \circ f$ is measurable and that

$$\varphi\left(\int_X f\,d\mu\right) \leq \int_X \varphi \circ f\,d\mu.$$

7) Let $1 \le p < \infty$ and p' = p/(p-1). Show that for every $u \in L^p(X, \mu)$, then

$$||u||_p = \sup\left\{\int_X |uv| \, d\mu : v \in L^{p'}(X,\mu), \, ||v||_{p'} \le 1\right\}.$$

If $p = \infty$ and X is σ -finite, show that for every $u \in L^{\infty}(X, \mu)$, then

$$||u||_{\infty} = \sup\left\{\int_{X} |uv| \, d\mu : v \in L^1(X,\mu), \, ||v||_1 \le 1\right\}.$$

We recall that X is σ -finite is there exists an increasing sequence of measurable sets $(X_n)_{n\in\mathbb{N}} \subset \mathfrak{M}$ such that $X = \bigcup_{n\in\mathbb{N}}$ and $\mu(X_n) < \infty$ for each $n \in \mathbb{N}$.