Basic functional analysis 2011-2012

## Integration and measure theory.

**Riesz Representation Theorem.** Let  $\Omega$  be an open subset of  $\mathbb{R}^N$ , and  $\mathcal{C}_c(\Omega)$  be the space of all continuous functions having compact support in  $\Omega$ . Let  $L : \mathcal{C}_c(\Omega) \to \mathbb{R}$  be a positive linear functional, i.e.,

$$L(\alpha f + \beta g) = \alpha L(f) + \beta L(g) \quad \text{for all } f, g \in \mathcal{C}_c(\Omega) \text{ and all } \alpha, \beta \in \mathbb{R},$$
$$L(f) \ge 0 \quad \text{for all } f \in \mathcal{C}_c(\Omega) \text{ with } f \ge 0.$$

Then there exist a  $\sigma$ -algebra  $\mathfrak{M}$  (containing the Borel  $\sigma$ -algebra  $\mathcal{B}(\Omega)$ ) and a unique measure  $\mu$  on  $\mathfrak{M}$  such that

$$L(f) = \int_{\Omega} f \, d\mu,\tag{1}$$

for every  $f \in \mathcal{C}_c(\Omega)$ . Moreover, for each compact set  $K \subset \Omega$ ,  $\mu(K) < \infty$ , and for every  $E \in \mathfrak{M}$ ,

$$\mu(E) = \inf\{\mu(V) : E \subset V, V \text{ open}\},\tag{2}$$

and every open set E, and every  $E \in \mathfrak{M}$  with  $\mu(E) < \infty$ ,

$$\mu(E) = \sup\{\mu(K) : K \subset E, K \text{ compact}\}.$$
(3)

1) Show the uniqueness : if  $\mu_1$  and  $\mu_2$  are two measures satisfying the conclusion of the theorem, show that  $\mu_1 = \mu_2$  (*hint* : use Urysohn's theorem).

**2)** For every open set  $V \subset \Omega$ , we define

$$\mu(V) := \sup\{L(f) : f \in \mathcal{C}_c(\Omega), \ \|f\|_{\infty} \le 1, \ \operatorname{supp}(f) \subset V\}.$$

$$\tag{4}$$

Show that if  $V_1 \subset V_2$ , then  $\mu(V_1) \leq \mu(V_2)$ .

**3)** We extend  $\mu$  to any arbitrary  $E \subset \Omega$  by setting

$$\mu(E) := \inf\{\mu(V) : E \subset V, V \text{ open}\}.$$
(5)

Show that both definitions (4) and (5) are coincide on open sets, and that property (2) is satisfied.

4) Show that  $\mu$  is an increasing set function : if  $E_1 \subset E_2$ , then  $\mu(E_1) \leq \mu(E_2)$ .

5) Let  $\mathfrak{M}_F$  be the family of all sets  $E \subset \Omega$  such that  $\mu(E) < \infty$  and

$$\mu(E) = \sup\{\mu(K) : K \subset E, K \text{ compact}\}.$$

Finally, let  $\mathfrak{M}$  be the class of all  $E \subset \Omega$  such that  $E \cap K \in \mathfrak{M}_F$  for any compact K. Show that if K is compact, then  $K \in \mathfrak{M}_F$ , and

$$\mu(K) = \inf\{L(f) : f \in \mathcal{C}_c(\Omega; [0, 1]), \ f = 1 \text{ on } K\}.$$

- 6) Show that any open set V satisfies (3), and that if  $\mu(V) < \infty$ , then  $V \in \mathfrak{M}_F$ .
- 7) Show that  $\mu$  is finitely subadditive on open sets : if  $V_1$  and  $V_2$  are open sets,  $\mu(V_1 \cup V_2) \le \mu(V_1) + \mu(V_2)$ .

8) Show that  $\mu$  is countably subadditive : for every sets  $E_n \subset \Omega$  for  $n \in \mathbb{N}^*$ , then

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) \le \sum_{n=1}^{\infty} \mu(E_n).$$

**9)** Show that  $\mu$  is finitely additive on compact sets : if  $K_1$  and  $K_2$  are disjoint compact sets,  $\mu(K_1 \cup K_2) = \mu(K_1) + \mu(K_2)$ .

10) Show that if  $E = \bigcup_{n=1}^{\infty} E_n$ , where  $E_n$  are pairwise disjoint elements of  $\mathfrak{M}_F$  for all  $n \in \mathbb{N}^*$ , then,

$$\mu(E) = \sum_{n=1}^{\infty} \mu(E_n).$$

Prove that if  $\mu(E) < \infty$ , then  $E \in \mathfrak{M}_F$ .

**11)** Show that if  $E \in \mathfrak{M}_F$  and  $\varepsilon > 0$ , there is a compact set K and an open set V such that  $K \subset E \subset V$  and  $\mu(V \setminus K) < \varepsilon$ .

**12)** Deduce that if A and  $B \in \mathfrak{M}_F$ , then  $A \setminus B$ ,  $A \cup B$  and  $A \cap B \in \mathfrak{M}_F$ .

13) Show that  $\mathfrak{M}$  is a  $\sigma$ -algebra which contains all Borel sets and all sets E such that  $\mu(E) = 0$ . Deduce that  $\mathfrak{M}_F = \{E \subset \mathfrak{M} : \mu(E) < \infty\}.$ 

14) Show that  $\mu$  is a measure on  $\mathfrak{M}$  satisfying (2) and (3).

**15)** Prove that in order to show the representation property (1) it is enough to check the inequality  $L(f) \leq \int_{\Omega} f d\mu$  for any  $f \in \mathcal{C}_c(\Omega)$ .

**16)** Let  $f \in \mathcal{C}_c(\Omega)$ ,  $K := \operatorname{supp}(f)$  and [a, b] be an interval which contains the image of f. For  $\varepsilon > 0$ , let  $y_0, \ldots, y_n \in \mathbb{R}$  be such that  $y_0 < a < y_1 < \ldots < y_n = b$ , and  $\max_{1 \le i \le n} (y_i - y_{i-1}) < \varepsilon$ . Define

 $E_i := \{ x \in \Omega : y_{i-1} < f(x) \le y_i \} \cap K.$ 

Show that  $E_i$  are disjoint Borel sets whose union is K.

**17)** Show that  $L(f) \leq \int_{\Omega} f d\mu$  for any  $f \in \mathcal{C}_c(\Omega)$ .

## **Regularity of Radon measures**

1) With the notations of the Riesz Representation Theorem, show that for every measurable set  $E \in \mathfrak{M}$  and every  $\varepsilon > 0$ , there exist a closed set C and an open set V such that  $C \subset E \subset V$  and  $\mu(V \setminus C) < \varepsilon$ .

2) Let λ be a Radon measure in an open set Ω ⊂ ℝ<sup>N</sup>.
a) Show that

 $\lambda(E) = \inf \{ \lambda(V) : E \subset V, V \text{ open} \}$  for every Borel set  $E \subset \Omega$ ,

and

 $\lambda(E) = \sup\{\lambda(K) : K \subset E, K \text{ compact}\}\$ for every Borel set  $E \subset \Omega$  with  $\lambda(E) < \infty$ .

b) Show that for every Borel set  $E \subset \Omega$  and any  $\varepsilon > 0$ , there exist a closed set C and an open set V such that  $C \subset E \subset V$  and

 $\lambda(V \setminus C) < \varepsilon.$ 

*Hint* : Consider the positive linear form  $L(\varphi) := \int_{\Omega} \varphi \, d\lambda$  for all  $\varphi \in \mathcal{C}_c(\Omega)$ .

**Existence of the Lebesgue measure.** There exists a  $\sigma$ -algebra  $\mathcal{L}(\mathbb{R}^N)$  (containing the Borel  $\sigma$ -algebra  $\mathcal{B}(\mathbb{R}^N)$ ) and a unique measure  $\mathcal{L}^N$  on  $\mathcal{L}(\mathbb{R}^N)$  such that

- 1.  $\mathcal{L}^{N}([0,1]^{N}) = 1;$
- 2. For any  $x \in \mathbb{R}^N$  and any  $E \in \mathcal{L}(\mathbb{R}^N)$ ,  $\mathcal{L}^N(x+E) = \mathcal{L}^N(E)$ .

The measure  $\mathcal{L}^N$  is called the Lebesgue measure, and  $\mathcal{L}(\mathbb{R}^N)$  is the  $\sigma$ -algebra of all Lebesgue measurable sets.

1) Show that there exist a  $\sigma$ -algebra  $\mathcal{L}(\mathbb{R}^N)$  containing  $\mathcal{B}(\mathbb{R}^N)$ , and a measure  $\mathcal{L}^N$  on  $\mathcal{L}(\mathbb{R}^N)$  satisfying (2), (3) and such that

$$\int_{\mathbb{R}^N} f(x) \, dx = \int_{\mathbb{R}^N} f \, d\mathcal{L}^N$$

where the first integral is the Riemann integral of f, and the second one is the Lebesgue integral of f with respect to the measure  $\mathcal{L}^N$ .

2) Show that  $E \in \mathcal{L}(\mathbb{R}^N)$  if and only if there exist an  $F_{\sigma}$  set A (a countable union of closed sets) and a  $G_{\delta}$  set B (a countable intersection of open sets) such that  $A \subset E \subset B$  and  $\mathcal{L}^N(B \setminus A) = 0$ . Deduce that  $\mathcal{L}(\mathbb{R}^N) = \{E \cup Z, \text{ with } E \in \mathcal{B}(\mathbb{R}^N) \text{ and } \mathcal{L}^N(Z) = 0\}$ .

**3)** Let a < b be real numbers. Construct a sequence of functions  $\varphi_n \in \mathcal{C}_c(\mathbb{R})$  such that  $\varphi_n = 1$  in (a + 1/n, b - 1/n)and  $\varphi_n = 0$  in  $\mathbb{R} \setminus [a, b]$ .

4) Show that if  $a_i < b_i$  for all  $i \in \{1, \ldots, N\}$ , then

$$\mathcal{L}^N\left(\prod_{i=1}^N (a_i, b_i)\right) = \prod_{i=1}^N (b_i - a_i) \le \mathcal{L}^N\left(\prod_{i=1}^N [a_i, b_i]\right).$$

**5)** Show that for any  $i \in \{1, \ldots, N\}$  and any  $a \in \mathbb{R}$ ,  $\mathcal{L}^N(\{x_i = a\}) = 0$ . Deduce that

$$\mathcal{L}^N\left(\prod_{i=1}^N [a_i, b_i] \setminus \prod_{i=1}^N (a_i, b_i)\right) = 0$$

and that

$$\mathcal{L}^N\left(\prod_{i=1}^N (a_i, b_i)\right) = \prod_{i=1}^N (b_i - a_i) = \mathcal{L}^N\left(\prod_{i=1}^N [a_i, b_i]\right).$$

**6)** Show that for any  $x \in \mathbb{R}^N$  and any open set  $V \subset \mathbb{R}^N$ ,  $\mathcal{L}^N(x+V) = \mathcal{L}^N(V)$ .

7) Show that the Borel  $\sigma$ -algebra  $\mathcal{B}(\mathbb{R}^N)$  is stable by translation : if  $E \in \mathcal{B}(\mathbb{R}^N)$  and  $x \in \mathbb{R}^N$ , then  $x + E \in \mathcal{B}(\mathbb{R}^N)$ . Deduce that  $\mathcal{L}^N(x + E) = \mathcal{L}^N(E)$  for any  $E \in \mathcal{B}(\mathbb{R}^N)$ .

8) Using question 3, deduce that for any  $x \in \mathbb{R}^N$  and any  $E \in \mathcal{L}(\mathbb{R}^N)$ , then  $\mathcal{L}^N(x+E) = \mathcal{L}^N(E)$ .

9) Show that any open set can be covered by countably many closed cubes with pairwise disjoint interior.

10) Show that if  $\mu$  is a Radon measure invariant by translation, then there exists a constant c > 0 such that  $\mu = c\mathcal{L}^N$ . Deduce that if  $\mu([0,1]^N) = 1$ , then  $\mu = \mathcal{L}^N$ .