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Spaces of continuous functions

1) Let E and F be two metric spaces with E complete, and let (fn)n∈N be a sequence of continuous functions from
E to F such that fn(y) converges to f(y) for each y ∈ E.

a) Show that f is continuous on a dense Gδ set. We can consider the sets

En,p := {y ∈ E : ∀ q ≥ p, d(fp(y), fq(y)) ≤ 1/n}

and
On :=

⋃
p∈N

E̊n,p.

b) Deduce that if f : R→ R is derivable, then it is of class C1 on a dense Gδ.

2) Let C([0, 1]), endowed with the uniform norm. Show that the subsets A ⊂ C([0, 1]) of all continuous functions
nowhere derivable is a dense Gδ subset of C([0, 1]). We can consider the sets

An :=

{
f ∈ C([0, 1]) : ∃ y ∈ [0, 1] with sup

x∈[0,1]

|f(y)− f(x)|
|y − x|

≤ n

}
.

3) Urysohn Lemma. Let Ω be an open subset of RN , K be a compact set, and V be an open set such that K ⊂ V ⊂
V ⊂ Ω. Then there exists a continuous function f ∈ C(Ω) such that 0 ≤ f ≤ 1 in Ω, f = 1 on K and f = 0 on Ω \ V .

4) Partition of unity. Let Ω be an open subset of RN , K be a compact set, and V1, . . . , Vk be open sets satisfying
Vi ⊂ Ω for all i = 1, . . . , k, and K ⊂

⋃k
i=1 Vi. Then there exist continuous functions fi ∈ C(Ω) such that 0 ≤ fi ≤ 1

on Ω, fi = 0 on Ω \ Vi for all i = 1, . . . , k, and
∑k
i=1 fi = 1 on K.

5) Tietze extension theorem. Let f be a bounded and continuous function from a closed set C ⊂ RN into R. Then
there exists a continuous real valued function f∗ defined on the whole RN such that f = f∗ on C. Moreover, if

|f(x)| ≤M for all x ∈ C for some M > 0,

then
|f∗(x)| ≤M for all x ∈ RN .

a) Assume first that f is bounded on C by 1. Using Urysohn Lemma, show the existence of a continuous function
g1 : RN → [−1/3, 1/3] such that

g1 =
1
3
on
{
f ≥ 1

3

}
and g1 = −1

3
on
{
f ≤ −1

3

}
.

b) By iteration, show the existence of a sequence of continuous functions (gn)n≥1 on RN such that for all n ≥ 1,

|gn(x)| ≤ 1
3

(
2
3

)n−1

for all x ∈ RN ,

and ∣∣∣∣∣f(x)−
n∑
i=1

gi(x)

∣∣∣∣∣ ≤
(

2
3

)n
for all x ∈ C.

c) Conclude for the case where f is bounded on C by 1.
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d) Deduce the case where f is bounded on C by some constant M .

6) Topology of the space of continuous functions. Let E be a subset of RN .
a) Define for all f and g ∈ C(E),

d(f, g) := sup
x∈E
|f(x)− g(x)|.

Show that if E is compact, then d defines a distance on C(E) which generates a topology of complete metric
space.

b) Assume from now on that E is open. Construct a sequence of compact sets (Kn)n≥1 such that E =
⋃
n≥1Kn.

c) For every f and g ∈ C(E),
dn(f, g) := sup

x∈Kn

|f(x)− g(x)|.

Show that dn is not a distance on C(E) (dn is called a semi-norm).
d) Show that

d(f, g) :=
∑
n≥1

1
2n

dn(f, g)
1 + dn(f, g)

defines a distance on C(E).
e) Show that d(fn, f)→ 0 if and only if fn → f uniformly on any compact subset of E.
f) Show that C(E) endowed with this distance is a complete metric space.

7) Ascoli Theorem. Let (E, dE) be a compact metric space, (F, dF ) be a complete metric space and (fn)n∈N be a
sequence of functions in C(E;F ). Assume that

– (fn)n∈N is equi-continuous ;
– for all x ∈ E, the set {fn(x) : n ∈ N} is compact in F .

Then (fn)n∈N admits a subsequence uniformly converging in E.

a) Show that E is separable, i.e., there exists a countable dense subset X := {xp}p∈N in E.
b) Show the existence of a subsequence (fψ(n))n∈N of (fn)n∈N (where ψ : N → N is increasing) such that
fψ(n)(xp)→ f(xp) for all p ∈ N, for some f(xp) ∈ F . (Hint : use Cantor’s diagonalization procedure).

c) Show that f : X → F is uniformly continuous and that it can be extended to a uniformly continuous function
(still denoted f) from E to F .

d) Show that for all x ∈ E, fψ(n)(x)→ f(x) in F .
e) Conclude.

8) Compactness of the Hausdorff distance. Let (X, d) be a compact metric space. For all closed subsets A and
B of X, we recall that the Hausdorff distance between A and B is defined by

dH(A,B) := max
{

sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)
}
.

Show that if (An)n∈N is a sequence of closed subsets of X, then there exists a subsequence converging to some closed
set in the Hausdorff metric.

9) Show that the following sets are compact or not in (C([0, 1]; R), d[0,1]) :

a) A = {f : [0, 1]→ R : f continuous on [0, 1] and supx∈[0,1] |f(x)| ≤ 1}.
b) A = {f : [0, 1]→ R : f polynom and supx∈[0,1] |f(x)| ≤ 1}.
c) AN = {f : [0, 1]→ R : f polynom of degree less than or equal to N and supx∈[0,1] |f(x)| ≤ 1}.
d) A, where A = {f : [0, 1]→ R : f derivable and |f ′(x)| ≤ 1 ∀x ∈ [0, 1]}.
e) A, where A = {f : [0, 1]→ R : f(1) = 2, f derivable and |f ′(x)| ≤ 1 ∀x ∈ [0, 1]}.

f) A, where A =
{
f : [0, 1]→ R : |f(0)| ≤ 3 and

|f(x)− f(y)|
|x− y|1/3

≤ 5 ∀x, y ∈ [0, 1], x 6= y

}
.

g) A =
{
f : [0, 1]→ R :

|f(x)− f(y)|
|x− y|2

≤ 4 ∀x, y ∈ [0, 1], x 6= y

}
.

h) A =
{
f : [0, 1]→ R : |f(1/2)|+ |f(x)−f(y)|

|x−y|3/2 ≤ 4 ∀x, y ∈ [0, 1], x 6= y
}
.

2


