UPMC Master 1, MM05E Basic functional analysis 2011-2012

Spaces of continuous functions

1) Let *E* and *F* be two metric spaces with *E* complete, and let $(f_n)_{n \in \mathbb{N}}$ be a sequence of continuous functions from *E* to *F* such that $f_n(y)$ converges to f(y) for each $y \in E$.

a) Show that f is continuous on a dense G_{δ} set. We can consider the sets

$$E_{n,p} := \{ y \in E : \forall q \ge p, d(f_p(y), f_q(y)) \le 1/n \}$$

and

$$O_n := \bigcup_{p \in \mathbb{N}} \mathring{E}_{n,p}.$$

b) Deduce that if $f : \mathbb{R} \to \mathbb{R}$ is derivable, then it is of class \mathcal{C}^1 on a dense G_{δ} .

2) Let $\mathcal{C}([0,1])$, endowed with the uniform norm. Show that the subsets $A \subset \mathcal{C}([0,1])$ of all continuous functions nowhere derivable is a dense G_{δ} subset of $\mathcal{C}([0,1])$. We can consider the sets

$$A_n := \left\{ f \in \mathcal{C}([0,1]): \ \exists \ y \in [0,1] \text{ with } \sup_{x \in [0,1]} \frac{|f(y) - f(x)|}{|y - x|} \le n \right\}.$$

3) Urysohn Lemma. Let Ω be an open subset of \mathbb{R}^N , K be a compact set, and V be an open set such that $K \subset V \subset \overline{V} \subset \Omega$. Then there exists a continuous function $f \in \mathcal{C}(\Omega)$ such that $0 \leq f \leq 1$ in Ω , f = 1 on K and f = 0 on $\Omega \setminus \overline{V}$.

4) Partition of unity. Let Ω be an open subset of \mathbb{R}^N , K be a compact set, and V_1, \ldots, V_k be open sets satisfying $\overline{V_i} \subset \Omega$ for all $i = 1, \ldots, k$, and $K \subset \bigcup_{i=1}^k V_i$. Then there exist continuous functions $f_i \in \mathcal{C}(\Omega)$ such that $0 \leq f_i \leq 1$ on Ω , $f_i = 0$ on $\Omega \setminus \overline{V_i}$ for all $i = 1, \ldots, k$, and $\sum_{i=1}^k f_i = 1$ on K.

5) Tietze extension theorem. Let f be a bounded and continuous function from a closed set $C \subset \mathbb{R}^N$ into \mathbb{R} . Then there exists a continuous real valued function f^* defined on the whole \mathbb{R}^N such that $f = f^*$ on C. Moreover, if

$$|f(x)| \leq M$$
 for all $x \in C$ for some $M > 0$,

then

$$|f^*(x)| \le M$$
 for all $x \in \mathbb{R}^N$.

a) Assume first that f is bounded on C by 1. Using Urysohn Lemma, show the existence of a continuous function $g_1 : \mathbb{R}^N \to [-1/3, 1/3]$ such that

$$g_1 = \frac{1}{3}$$
 on $\left\{ f \ge \frac{1}{3} \right\}$ and $g_1 = -\frac{1}{3}$ on $\left\{ f \le -\frac{1}{3} \right\}$.

b) By iteration, show the existence of a sequence of continuous functions $(g_n)_{n\geq 1}$ on \mathbb{R}^N such that for all $n\geq 1$,

$$|g_n(x)| \le \frac{1}{3} \left(\frac{2}{3}\right)^{n-1}$$
 for all $x \in \mathbb{R}^N$,

and

$$\left| f(x) - \sum_{i=1}^{n} g_i(x) \right| \le \left(\frac{2}{3}\right)^n \text{ for all } x \in C.$$

c) Conclude for the case where f is bounded on C by 1.

- d) Deduce the case where f is bounded on C by some constant M.
- 6) Topology of the space of continuous functions. Let E be a subset of \mathbb{R}^N .

a) Define for all f and $g \in \mathcal{C}(E)$,

$$d(f,g) := \sup_{x \in E} |f(x) - g(x)|.$$

Show that if E is compact, then d defines a distance on $\mathcal{C}(E)$ which generates a topology of complete metric space.

- b) Assume from now on that E is open. Construct a sequence of compact sets $(K_n)_{n\geq 1}$ such that $E = \bigcup_{n\geq 1} K_n$.
- c) For every f and $g \in \mathcal{C}(E)$,

$$d_n(f,g) := \sup_{x \in K_n} |f(x) - g(x)|.$$

Show that d_n is not a distance on $\mathcal{C}(E)$ (d_n is called a semi-norm).

d) Show that

$$d(f,g) := \sum_{n \ge 1} \frac{1}{2^n} \frac{d_n(f,g)}{1 + d_n(f,g)}$$

defines a distance on $\mathcal{C}(E)$.

- e) Show that $d(f_n, f) \to 0$ if and only if $f_n \to f$ uniformly on any compact subset of E.
- f) Show that $\mathcal{C}(E)$ endowed with this distance is a complete metric space.

7) Ascoli Theorem. Let (E, d_E) be a compact metric space, (F, d_F) be a complete metric space and $(f_n)_{n \in \mathbb{N}}$ be a sequence of functions in $\mathcal{C}(E; F)$. Assume that

- $(f_n)_{n\in\mathbb{N}}$ is equi-continuous;

- for all $x \in E$, the set $\{f_n(x) : n \in \mathbb{N}\}$ is compact in F.

Then $(f_n)_{n \in \mathbb{N}}$ admits a subsequence uniformly converging in E.

- a) Show that E is separable, *i.e.*, there exists a countable dense subset $X := \{x_p\}_{p \in \mathbb{N}}$ in E.
- b) Show the existence of a subsequence $(f_{\psi(n)})_{n\in\mathbb{N}}$ of $(f_n)_{n\in\mathbb{N}}$ (where $\psi : \mathbb{N} \to \mathbb{N}$ is increasing) such that $f_{\psi(n)}(x_p) \to f(x_p)$ for all $p \in \mathbb{N}$, for some $f(x_p) \in F$. (*Hint* : use Cantor's diagonalization procedure).
- c) Show that $f: X \to F$ is uniformly continuous and that it can be extended to a uniformly continuous function (still denoted f) from E to F.
- d) Show that for all $x \in E$, $f_{\psi(n)}(x) \to f(x)$ in F.
- e) Conclude.

8) Compactness of the Hausdorff distance. Let (X, d) be a compact metric space. For all closed subsets A and B of X, we recall that the Hausdorff distance between A and B is defined by

$$d_{\mathcal{H}}(A,B) := \max\left\{\sup_{x \in A} dist(x,B), \sup_{y \in B} dist(y,A)\right\}.$$

Show that if $(A_n)_{n \in \mathbb{N}}$ is a sequence of closed subsets of X, then there exists a subsequence converging to some closed set in the Hausdorff metric.

- 9) Show that the following sets are compact or not in $(\mathcal{C}([0,1];\mathbb{R}), d_{[0,1]})$:
 - a) $A = \{f : [0,1] \to \mathbb{R} : f \text{ continuous on } [0,1] \text{ and } \sup_{x \in [0,1]} |f(x)| \le 1\}.$
 - b) $A = \{f : [0,1] \to \mathbb{R} : f \text{ polynom and } \sup_{x \in [0,1]} |f(x)| \le 1\}.$
 - c) $A_N = \{f : [0,1] \to \mathbb{R} : f \text{ polynom of degree less than or equal to } N \text{ and } \sup_{x \in [0,1]} |f(x)| \le 1\}.$
 - d) \overline{A} , where $A = \{f : [0,1] \to \mathbb{R} : f \text{ derivable and } |f'(x)| \le 1 \ \forall x \in [0,1] \}.$
 - e) \overline{A} , where $A = \{f : [0,1] \to \mathbb{R} : f(1) = 2, f \text{ derivable and } |f'(x)| \le 1 \ \forall x \in [0,1]\}.$

f)
$$\overline{A}$$
, where $A = \left\{ f : [0,1] \to \mathbb{R} : |f(0)| \le 3 \text{ and } \frac{|f(x) - f(y)|}{|x - y|^{1/3}} \le 5 \ \forall x, y \in [0,1], x \ne y \right\}.$

g)
$$A = \left\{ f: [0,1] \to \mathbb{R} : \frac{|f(x) - f(y)|}{|x - y|^2} \le 4 \ \forall x, y \in [0,1], x \ne y \right\}.$$

h) $A = \left\{ f: [0,1] \to \mathbb{R} : |f(1/2)| + \frac{|f(x) - f(y)|}{|x - y|^{3/2}} \le 4 \ \forall x, y \in [0,1], x \ne y \right\}.$