Topology

Topological spaces

1) Let (X, \mathcal{T}) be a topological space. Show that $\mathcal{T} = \mathcal{P}(X)$ (we say that \mathcal{T} is the *discrete topology*) if and only if every point is an open set.

2) Let (X, \mathcal{T}) be a topological space, and A be a non empty subset of X. We define the relative topology on A by

$$\mathcal{T}_A = \{ U \cap A : U \in \mathcal{T} \}.$$

- a) Prove that \mathcal{T}_A is a topology on A.
- b) Prove that if $A \in \mathcal{T}$, then $\mathcal{T}_A = \{U \in \mathcal{T} : U \subset A\}$. Show that it is not the case in general.
- c) We denote by $C = \{C : X \setminus C \in T\}$ the family of all closed sets in X. Prove that the family of all closed subsets of A is $C_A = \{C \cap A : C \in C\}$.
- d) Prove that if $A \in \mathcal{C}$, then $\mathcal{C}_A = \{C \in \mathcal{C} : C \subset A\}$. Show that it is not the case in general.

3) Let X be a set, and let \mathcal{T}_1 , \mathcal{T}_2 be two topologies on X such that for each $x \in X$, every neighborhood of x for \mathcal{T}_1 is a neighborhood of x for \mathcal{T}_2 , and conversely. Show that $\mathcal{T}_1 = \mathcal{T}_2$.

4) Let X be a topological space, $(x_n)_{n \in \mathbb{N}} \subset X$, and $x \in X$. We assume that x is an accumulation point of every subsequence of $(x_n)_{n \in \mathbb{N}}$. Show that the full sequence $(x_n)_{n \in \mathbb{N}}$ converges to x.

Separated topological spaces

- 5) Show that in every separated topological space (also called *Hausdorff space*) every point is a closed set.
- 6) Let (X, \mathcal{T}) be a separated topological space, and let $A \subset X$. Show that (A, \mathcal{T}_A) is a separated topological space.

7) Let (X, \mathcal{T}) be a topological space, and let $(x_n)_{n \in \mathbb{N}}$ be a sequence in X. We assume that a subsequence $(x_n)_{n \in \mathbb{N}}$ converges to $x \in X$. Show that x is an accumulation point of $(x_n)_{n \in \mathbb{N}}$.

Compact (separated) topological spaces

8) A topological space (X, \mathcal{T}) is *discrete* if $\mathcal{T} = \mathcal{P}(X)$, *i.e.*, if all subsets of X are open. Show that in a discrete topological space, all compact subsets are finite.

9) A family $(F_i)_{i \in I}$ in a topological space is said to have the *finite intersection property* if and only if all finite subfamily has a nonempty intersection. Show that a topological space is compact if and only if all family of closed sets $(F_i)_{i \in I}$ having the finite intersection property admits a common point $(i.e., \bigcap F_i \neq \emptyset)$.

- 10) Show that a compact set in a separated topological space is closed.
- 11) Let (X, \mathcal{T}) be a separated and compact topological space.
 - a) Show that every closed set is compact.
 - b) Let $x \in X$ and $C \subset X$ be a closed set such that $x \notin C$. Show that there exist two disjoint open sets V_1 and V_2 such that $x \in V_1$ et $C \subset V_2$.
 - c) Let C_1 and C_2 be two disjoint closed sets. Show that there exist two disjoint open sets U_1 and U_2 satisfying $C_i \subset U_i \ (i = 1, 2)$.

Baire spaces

12) We recall that a topological space is a Baire space if all countable intersection of dense open sets is dense. Show that a topological space is a Baire space if and only if all countable union of closed sets with empty interior has empty interior.

Metric spaces

- **13)** Let X be a set. We define the mapping $d: X \times X \to \mathbb{R}$ by d(x, y) = 0 if x = y and d(x, y) = 1 if $x \neq y$.
 - a) Show that d is a distance.
 - b) Show that the topology \mathcal{T} induced by d is the discrete topology, *i.e.*, $\mathcal{T} = \mathcal{P}(X)$.

14) Let (X, d) be a metric space, and let A be a compact subset of X.

- a) Show that A is bounded and closed.
- b) Show on a counterexample that the converse is wrong.

15) Let (X, d) be a complete metric space, and $A \subset X$. Show that

(A, d) is complete if and only if A is closed in X.

16) Let (X, d) be a metric space, and $A \subset X$ a compact set. Show that

 $B \subset A$ is compact if and only if B is closed in X.

17) Let (X, d) be a metric space. For all $a \in X$ and $r \ge 0$, we define

 $B(a,r) := \{x \in X : d(x,a) < r\}$ (open ball of center a and radius r),

 $\overline{B}(a,r) := \{ x \in X : d(x,a) \le r \}$ (closed ball of center *a* and radius *r*),

Show that $\overline{B(a,r)} \subset \overline{B}(a,r)$ and that $B(a,r) \subset int(\overline{B}(a,r))$. Give an example of metric space where these inclusions are strict.

18) (*Hausdorff distance*) Let (X, d) be a metric space, $x \in X$ and $A \subset X$ non empty. We define the distance between x and A by :

$$dist(x,A) := \inf_{a \in A} d(x,a).$$

- a) Show that $x \mapsto dist(x, A)$ is 1-Lipschitz;
- b) Assume that A is closed. Show that $x \in A$ if and only if dist(x, A) = 0.
- c) Show that if A is compact, there exists $a \in A$ such that dist(x, A) = d(x, a).
- d) Assume now that X is compact, and let A and B be two closed subset of X. We define the Hausdorff distance between A and B by

$$d_{\mathcal{H}}(A,B) := \max\left\{\sup_{x \in A} dist(x,B), \sup_{y \in B} dist(y,A)\right\}.$$

Show that $d_{\mathcal{H}}$ is a distance on the family of all closed subsets of X.

- e) Show that $d_{\mathcal{H}}(A_n, A) \to 0$ if and only if the following properties hold :
 - each $x \in A$ is the limit of a sequence $(x_n)_{n \in \mathbb{N}}$, with $x_n \in A_n$ for all $n \in \mathbb{N}$;
 - if $x_n \in A_n$, any limit point of $(x_n)_{n \in \mathbb{N}}$ belongs to A.

Baire Banach spaces

19) Let *E* be a Banach space (*i.e.* a complete normed vector space) with infinite dimension. Show that the dimension of *E* is uncountable. Deduce that there is no norm on the space of real polynomials $\mathbb{R}[X]$ which makes it into a Banach space.

20) Let *E* be a Banach space, and $f: E \to E$ be a continuous linear map such that for all $x \in E$ there exists $n_x \in \mathbb{N}$ such that $f^{(n_x)}(x) = 0$. Show that *f* is nilpotent, *i.e.*, there exists $N \in \mathbb{N}$ such that $f^{(N)} = 0$.

21) Riesz Theorem. Let E be a Banach space. Then the closed unit ball $B_1 := \{x \in E : ||x||_E \le 1\}$ is compact if and only if E has finite dimension.

a) Show that if F is a closed subspace of E, then for any $\varepsilon > 0$ there exists $x_{\varepsilon} \in E$ such that

 $||x_{\varepsilon}||_{E} = 1$, and $||x_{\varepsilon} - y||_{E} \ge 1$ for all $y \in F$.

Hint : Fix $x_0 \in E \setminus F$, and consider $d := dist(x_0, F)$. Then choose an element $x_1 \in F$ whose distance to x_0 is almost d.

- b) Show that if B_1 is compact, there exists a finite dimension space F such that $B_1 \subset F \subset E$.
- c) Conclude.

Separability.

22) Show that ℓ^{∞} is not separable