Analyse de forêts purement aléatoires

Sylvain Arlot^{1,2} (collaboration avec Robin Genuer³)

¹Université Paris-Saclay

²Inria Saclay, équipe-projet Celeste

³ISPED, Université de Bordeaux

Séminaire du LPSM 1er Décembre 2020

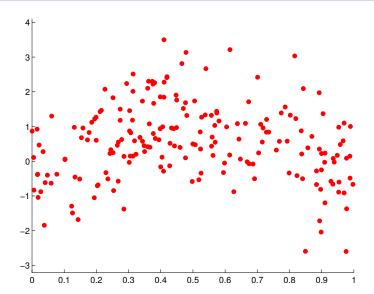
Références: arXiv:1407.3939 arXiv:1604.01515

Outline

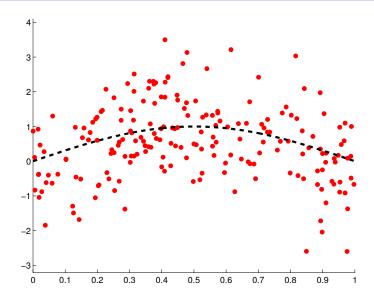
- Random forests
- 2 Purely random forests
- 3 Toy forests
- 4 Hold-out random forests

• · · · · · Outline

- Random forests
- 2 Purely random forests
- 3 Toy forests
- 4 Hold-out random forests



Goal: find the signal (denoising)



Regression

Random forests

• Data
$$D_n$$
: $(X_1,Y_1),\ldots,(X_n,Y_n)\in\mathbb{R}^p imes\mathbb{R}$ (i.i.d. $\sim P$)
$$Y_i=s^\star(X_i)+\varepsilon_i$$

with $s^*(X) = \mathbb{E}[Y | X]$ (regression function).

0000000000

• Data D_n : $(X_1,Y_1),\ldots,(X_n,Y_n)\in\mathbb{R}^p imes\mathbb{R}$ (i.i.d. $\sim P$) $Y_i=s^\star(X_i)+arepsilon_i$

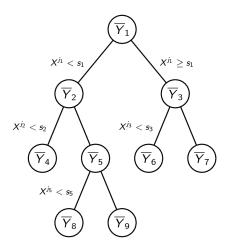
with $s^*(X) = \mathbb{E}[Y | X]$ (regression function).

ullet Goal: learn f measurable function $\mathcal{X} o \mathbb{R}$ s.t. the quadratic risk

$$\mathbb{E}_{(X,Y)\sim P}\Big[\big(f(X)-s^{\star}(X)\big)^2\Big]$$

is minimal.

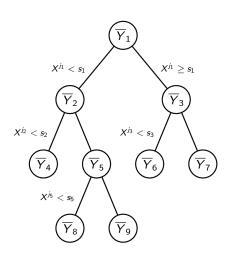
Regression tree (Breiman et al, 1984)



Tree: piecewise-constant predictor, obtained by partitioning recursively \mathbb{R}^p .

Restriction: splits parallel to the axes.

Regression tree (Breiman et al, 1984)



Tree: piecewise-constant predictor, obtained by partitioning recursively \mathbb{R}^p .

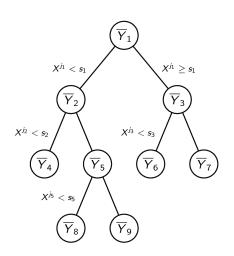
Restriction: splits parallel to the axes.

Choice of the partition U (tree structure) Usually, at each step, one looks for the best split of the data into two groups (minimize sum of within-group variances) D_n.

Random forests

00000000000

Regression tree (Breiman et al, 1984)



Tree: piecewise-constant predictor, obtained by partitioning recursively \mathbb{R}^p .

Restriction: splits parallel to the axes.

- lacktriangle Choice of the partition \mathbb{U} (tree structure)
- **2** For each $\lambda \in \mathbb{U}$ (tree leaf), choice of the estimation β_{λ} of $s^*(x)$ when $x \in \lambda$. Here, $\beta_{\lambda} = \overline{Y}_{\lambda}$ average of the $(Y_i)_{X_i \in \lambda}$.

Random forests

00000000000

0000000000

Definition (Random forest (Breiman, 2001))

 $\left\{\widehat{s}_{\Theta_j}, 1\leqslant j\leqslant q\right\}$ collection of tree predictors, $(\Theta_j)_{1\leqslant j\leqslant q}$ i.i.d. r.v. independent from D_n .

Random forest predictor \hat{s} obtained by aggregating the tree collection.

$$\widehat{s}(x) = \frac{1}{q} \sum_{j=1}^{q} \widehat{s}_{\Theta_j}(x)$$

- ensemble method (Dietterich, 1999, 2000)
- powerful statistical learning algorithm, for both classification and regression.

- Bootstrap (Efron, 1979): draw n i.i.d. r.v., uniform over $\{(X_i, Y_i) / i = 1, ..., n\}$ (sampling with replacement) \Rightarrow resample D_n^b
- Bootstrapping a tree: $\widehat{s}_{\mathrm{tree}}^b = \widehat{s}_{\mathrm{tree}}(D_n^b)$
- Bagging: bootstrap (q independent resamples) then aggregation

$$\widehat{s}_{\text{bagging}}(x) = \frac{1}{q} \sum_{i=1}^{q} \widehat{s}_{\text{tree}}^{b,j}(x)$$

0000000000

Random Forest-Random Inputs (Breiman, 2001)

Definition (RI tree)

Random forests

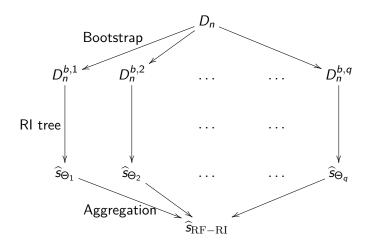
0000000000

In a RI tree, at each node, mtry variables are randomly chosen. Then, the best cut direction is chosen only among the chosen variables.

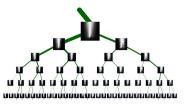
Definition (Random forest RI)

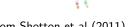
A random forest RI (RF-RI) is obtained by aggregating RI trees built on independent bootstrap resamples.

> RF-RI ⇔ bagging on RI trees



Example of application of random forests: Kinect





Figures from Shotton et al (2011)

Theoretical results on RF-RI

- Few theoretical results on Breiman's original RF-RI
- Most results.

Random forests

0000000000

- focus on a specific part of the algorithm (resampling, split criterion),
- modify the algorithm (eg, subsampling instead of resampling)
- make strong assumptions on s*
- References (see survey paper by Biau and Scornet, 2016): Scornet, Biau & Vert (2015), Mentch & Hooker (2016), Wager & Athey (2018), Genuer & Poggi (2019), ...

Theoretical results on RF-RI

- Few theoretical results on Breiman's original RF-RI
- Most results.

Random forests

0000000000

- focus on a specific part of the algorithm (resampling, split criterion),
- modify the algorithm (eg, subsampling instead of resampling)
- make strong assumptions on s*
- References (see survey paper by Biau and Scornet, 2016): Scornet, Biau & Vert (2015), Mentch & Hooker (2016), Wager & Athey (2018), Genuer & Poggi (2019), ...
- ⇒ Here, we consider simplified RF models, for which a precise analysis is possible: purely random forests

Outline

- Random forests
- Purely random forests
- 3 Toy forests
- 4 Hold-out random forests

Purely random forests

Random forests

Definition (Purely random tree)

$$\widehat{\mathfrak{s}}_{\mathbb{U}}(x) = \sum_{\lambda \in \mathbb{U}} \overline{Y_{\lambda}}(D_n) \mathbb{1}_{x \in \lambda}$$

where $\overline{Y_{\lambda}}(D_n)$ is the average of $(Y_i)_{X_i \in \lambda, (X_i, Y_i) \in D_n}$ and the partition \mathbb{U} is independent from D_n .

Definition (Purely random forest)

$$\widehat{s}(x) = \frac{1}{q} \sum_{j=1}^{q} \widehat{s}_{\mathbb{U}^j}(x)$$

with $\mathbb{U}^1, \ldots, \mathbb{U}^q$ i.i.d., independent from D_n .

Definition (Purely random forest)

$$\widehat{s}(x) = \frac{1}{q} \sum_{j=1}^{q} \widehat{s}_{\mathbb{U}^{j}}(x) = \frac{1}{q} \sum_{j=1}^{q} \sum_{\lambda \in \mathbb{U}^{j}} \overline{Y_{\lambda}}(D_{n}) \mathbb{1}_{x \in \lambda}$$

with $\mathbb{U}^1, \ldots, \mathbb{U}^q$ i.i.d., independent from D_n .

Example ("hold-out RF" model): use some extra data D'_n for building the trees: $\mathbb{U}^j = \mathbb{U}_{\mathrm{RI}}(D_n^{\prime\star j})$ (can be done by splitting the sample into two subsamples D_n and D'_n).

Definition (Purely random forest)

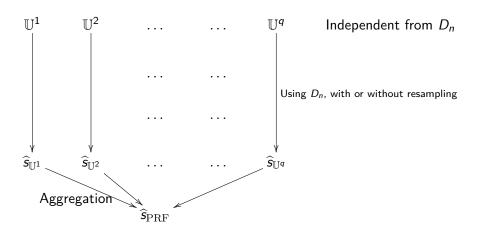
$$\widehat{s}(x) = \frac{1}{q} \sum_{j=1}^{q} \widehat{s}_{\mathbb{U}^{j}}(x) = \frac{1}{q} \sum_{j=1}^{q} \sum_{\lambda \in \mathbb{U}^{j}} \overline{Y_{\lambda}}(D_{n}) \mathbb{1}_{x \in \lambda}$$

with $\mathbb{U}^1, \ldots, \mathbb{U}^q$ i.i.d., independent from D_n .

Example ("hold-out RF" model): use some extra data D'_n for building the trees: $\mathbb{U}^j = \mathbb{U}_{\mathrm{RI}}(D_n^{\prime\star j})$ (can be done by splitting the sample into two subsamples D_n and D'_n).

 $\underline{\wedge}$ From now on, D_n is the sample used for computing $(\overline{Y_{\lambda}}(D_n))_{\lambda \in \mathbb{U}}$, and we assume its size is n.

Purely random forests



- Consistency: Biau, Devroye & Lugosi (2008), Scornet (2014)
- Rates of convergence: Breiman (2004), Biau (2012), Klusowski (2018), Duroux & Scornet (2018), Mourtada, Gaiffas & Scornet (2017 & 2020)
- Some adaptivity to dimension reduction (sparse framework):
 Biau (2012), Klusowski (2018)
- Forests decrease the estimation error (Biau, 2012; Genuer, 2012)

- Consistency: Biau, Devroye & Lugosi (2008), Scornet (2014)
- Rates of convergence: Breiman (2004), Biau (2012),
 Klusowski (2018), Duroux & Scornet (2018), Mourtada,
 Gaiffas & Scornet (2017 & 2020)
- Some adaptivity to dimension reduction (sparse framework):
 Biau (2012), Klusowski (2018)
- Forests decrease the estimation error (Biau, 2012; Genuer, 2012)
- ⇒ What about approximation error? Almost the same for a forest and a tree?

Given the partition U, regressogram estimator

$$\widehat{s}_{\mathbb{U}}(x) := \sum_{\lambda \in \mathbb{U}} \overline{Y_{\lambda}} \mathbb{1}_{x \in \lambda}$$

where $\overline{Y_{\lambda}}$ is the average of $(Y_i)_{X_i \in \lambda}$.

$$\widehat{S}_{\mathbb{U}} \in \operatorname*{argmin}_{f \in S_{\mathbb{U}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(X_i))^2 \right\}$$

where $S_{\mathbb{U}}$ is the vector space of functions which are constant over each $\lambda \in \mathbb{U}$.

Civen the partition II regressegram estimator

Given the partition $\ensuremath{\mathbb{U}}$, regressogram estimator

$$\widehat{s}_{\mathbb{U}}(x) := \sum_{\lambda \in \mathbb{U}} \overline{Y_{\lambda}} \mathbb{1}_{x \in \lambda}$$

where $\overline{Y_{\lambda}}$ is the average of $(Y_i)_{X_i \in \lambda}$.

$$\widehat{s}_{\mathbb{U}} \in \operatorname*{argmin}_{f \in S_{\mathbb{U}}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(X_i))^2 \right\}$$

where $S_{\mathbb{U}}$ is the vector space of functions which are constant over each $\lambda \in \mathbb{U}$.

Define:

$$\tilde{\mathbf{s}}_{\mathbb{U}}(\mathbf{x}) := \sum_{\lambda \in \mathbb{U}} \beta_{\lambda} \mathbb{1}_{\mathbf{x} \in \lambda} \quad \text{ where } \beta_{\lambda} := \mathbb{E}[\mathbf{s}^{\star}(X) \, | \, X \in \lambda] \ .$$

$$\Rightarrow \tilde{s}_{\mathbb{U}} \in \operatorname{argmin}_{f \in S_{\mathbb{U}}} \mathbb{E} \Big[\big(f(X) - s^{\star}(X) \big)^2 \Big] \text{ and } \tilde{s}_{\mathbb{U}}(x) = \mathbb{E} \big[\widehat{s}_{\mathbb{U}}(x) \, | \, \mathbb{U} \big]_{18/40}$$

$$\mathbb{E}\Big[\big(\widehat{s}_{\mathbb{U}}(X) - s^{\star}(X)\big)^{2}\Big]$$

$$= \mathbb{E}\Big[\big(\widetilde{s}_{\mathbb{U}}(X) - s^{\star}(X)\big)^{2}\Big] + \mathbb{E}\Big[\big(\widehat{s}_{\mathbb{U}}(X) - \widetilde{s}_{\mathbb{U}}(X)\big)^{2}\Big]$$

$$= \text{Approximation error} + \text{Estimation error}$$

$$\mathbb{E}\Big[\big(\widehat{s}_{\mathbb{U}}(X) - s^{\star}(X)\big)^{2}\Big]$$

$$= \mathbb{E}\Big[\big(\widetilde{s}_{\mathbb{U}}(X) - s^{\star}(X)\big)^{2}\Big] + \mathbb{E}\Big[\big(\widehat{s}_{\mathbb{U}}(X) - \widetilde{s}_{\mathbb{U}}(X)\big)^{2}\Big]$$

$$= \text{Approximation error} + \text{Estimation error}$$

If s^* is smooth, $X \sim \mathcal{U}([0,1]^p)$ and \mathbb{U} regular partition into Dpieces, then

$$\mathbb{E}\Big[(\widetilde{s}_{\mathbb{U}}(X) - s^{\star}(X))^2 \Big] \propto \frac{1}{D^{2/p}}$$

$$\mathbb{E}\Big[\big(\widehat{s}_{\mathbb{U}}(X) - s^{\star}(X)\big)^{2}\Big]$$

$$= \mathbb{E}\Big[\big(\widetilde{s}_{\mathbb{U}}(X) - s^{\star}(X)\big)^{2}\Big] + \mathbb{E}\Big[\big(\widehat{s}_{\mathbb{U}}(X) - \widetilde{s}_{\mathbb{U}}(X)\big)^{2}\Big]$$

$$= \text{Approximation error} + \text{Estimation error}$$

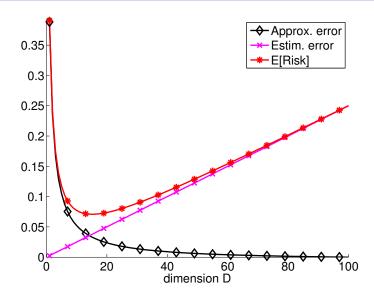
If s^\star is smooth, $X \sim \mathcal{U}([0,1]^p)$ and $\mathbb U$ regular partition into D pieces, then

$$\mathbb{E}\Big[\big(\widetilde{s}_{\mathbb{U}}(X)-s^{\star}(X)\big)^2\Big] \propto \frac{1}{D^{2/p}}$$

If $var(Y | X) = \sigma^2$ does not depend on X, then

$$\mathbb{E}\Big[\big(\widehat{s}_{\mathbb{U}}(X) - \widetilde{s}_{\mathbb{U}}(X)\big)^2\Big] \approx \frac{\sigma^2 D}{n}$$

Approximation and estimation errors, p = 1



Risk decomposition: purely random forest

$$(\mathbb{U}^j)_{1\leqslant j\leqslant q}$$
 finite partitions, i.i.d. $\sim \mathcal{U}$

Estimator (forest):
$$\widehat{s}_{\mathbb{U}^{1\cdots q}}(x) := \frac{1}{q} \sum_{i=1}^{q} \widehat{s}_{\mathbb{U}^{i}}(x)$$

$$\mathsf{Ideal\ forest:}\qquad \widetilde{\mathbf{s}}_{\mathbb{U}^{1\cdots q}}(\mathbf{x}) := \frac{1}{q}\sum_{i=1}^{q}\widetilde{\mathbf{s}}_{\mathbb{U}^{i}}(\mathbf{x}) = \mathbb{E}\big[\widehat{\mathbf{s}}_{\mathbb{U}^{1\cdots q}}(\mathbf{x})\,|\,\mathbb{U}^{1\cdots q}\big]$$

$$(\mathbb{U}^j)_{1\leqslant j\leqslant q}$$
 finite partitions, i.i.d. $\sim \mathcal{U}$

Estimator (forest):
$$\widehat{s}_{\mathbb{U}^{1\cdots q}}(x) := \frac{1}{q} \sum_{j=1}^q \widehat{s}_{\mathbb{U}^j}(x)$$

$$\mathsf{Ideal\ forest:}\qquad \widetilde{\mathtt{s}}_{\mathbb{U}^{1\cdots q}}(x) := \frac{1}{q} \sum_{i=1}^q \widetilde{\mathtt{s}}_{\mathbb{U}^i}(x) = \mathbb{E}\big[\widehat{\mathtt{s}}_{\mathbb{U}^{1\cdots q}}(x) \,|\, \mathbb{U}^{1\cdots q}\big]$$

Quadratic risk decomposition (given X = x)

$$\mathbb{E}\Big[\big(\widehat{s}_{\mathbb{U}^{1\cdots q}}(x) - s^{\star}(x)\big)^{2}\Big] = \mathbb{E}\Big[\big(\widetilde{s}_{\mathbb{U}^{1\cdots q}}(x) - s^{\star}(x)\big)^{2}\Big] + \mathbb{E}\Big[\big(\widehat{s}_{\mathbb{U}^{1\cdots q}}(x) - \widetilde{s}_{\mathbb{U}^{1\cdots q}}(x)\big)^{2}\Big] + \delta_{\mathbb{U}^{1\cdots q}}(x)$$

Approximation error: $\mathcal{B}_{\mathcal{U},q}(x) := \mathbb{E}\left[\left(\tilde{\mathbf{s}}_{\mathbb{U}^{1\cdots q}}(x) - s^{\star}(x)\right)^{2}\right]$

$$\mathcal{B}_{\mathcal{U},q}(x) = \mathcal{B}_{\mathcal{U},\infty}(x) + rac{\mathcal{V}_{\mathcal{U}}(x)}{q}$$
 where $\mathcal{B}_{\mathcal{U},\infty}(x) := \left(\mathbb{E}[\widetilde{s}_{\mathbb{U}}(x)] - s^{\star}(x)\right)^2$ and $\mathcal{V}_{\mathcal{U}}(x) := \mathsf{var}(\widetilde{s}_{\mathbb{U}}(x))$

 $\mathcal{B}_{\mathcal{U},\infty}(x)$ is the approx. error of the infinite forest: $\tilde{s}_{\mathbb{U},\infty}(x):=\mathbb{E}[\tilde{s}_{\mathbb{U}}(x)]$

to be compared with the approximation error of a single tree

$$\mathcal{B}_{\mathcal{U},1}(x) = \mathcal{B}_{\mathcal{U},\infty}(x) + \mathcal{V}_{\mathcal{U}}(x)$$

Outline

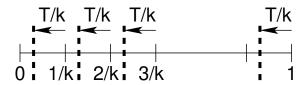
- Random forests
- 2 Purely random forests
- 3 Toy forests
- 4 Hold-out random forests

Assume: $\mathcal{X} = [0,1)^p$ and X uniform over $[0,1)^p$

If p = 1, $\mathbb{U} \sim \mathcal{U}_{k}^{\text{toy}}$ defined by:

$$\mathbb{U} = \left\{ \left[0, \frac{1-T}{k} \right), \left[\frac{1-T}{k}, \frac{2-T}{k} \right), \dots, \left[\frac{k-T}{k}, 1 \right) \right\}$$

where T has uniform distribution over [0,1].

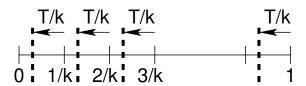


Assume: $\mathcal{X} = [0,1)^p$ and X uniform over $[0,1)^p$

If p = 1, $\mathbb{U} \sim \mathcal{U}_k^{\text{toy}}$ defined by:

$$\mathbb{U} = \left\{ \left[0, \frac{1-T}{k} \right) , \left[\frac{1-T}{k}, \frac{2-T}{k} \right) , \dots, \left[\frac{k-T}{k}, 1 \right) \right\}$$

where T has uniform distribution over [0,1].



If p > 1, T_i for each coordinate $j = 1, \ldots, p$, independent

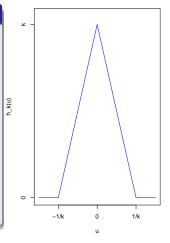
Proposition (A. & Genuer, 2014–2020)

For any $x \in \left| \frac{1}{k}, 1 - \frac{1}{k} \right|$, the ideal infinite forest at x satisfies:

$$ilde{s}_{\mathbb{U},\infty}(x) = (s^\star * h_k)(x) = \int_0^1 s^\star(t) h_k(x-t) dt \Big|_{\mathbb{F}_q^1}$$

where

$$h_k(u) = \begin{cases} k(1 - ku) & \text{if } 0 \leqslant u \leqslant \frac{1}{k} \\ k(1 + ku) & \text{if } -\frac{1}{k} \leqslant u \leqslant 0 \\ 0 & \text{if } |u| \geqslant \frac{1}{k} \end{cases}$$



Interpretation of the ideal infinite forest (p = 1): proof

 $I_{\mathbb{U}}(x):=$ the interval of \mathbb{U} to which x belongs

$$\widetilde{s}_{\mathbb{U}}(x) = \frac{1}{|I_{\mathbb{U}}(x)|} \int_{I_{\mathbb{U}}(x)} s^{\star}(t) dt$$

If
$$x \in \left[\frac{1}{k}, 1 - \frac{1}{k}\right]$$
, $I_{\mathbb{U}}(x) = \left[x + \frac{V_{x} - 1}{k}, x + \frac{V_{x}}{k}\right]$

where V_x has uniform distribution over [0,1].

 $I_{\mathbb{U}}(x):=$ the interval of \mathbb{U} to which x belongs

$$\widetilde{s}_{\mathbb{U}}(x) = \frac{1}{|I_{\mathbb{U}}(x)|} \int_{I_{\mathbb{U}}(x)} s^{\star}(t) dt$$

If
$$x \in \left[\frac{1}{k}, 1 - \frac{1}{k}\right]$$
, $I_{\mathbb{U}}(x) = \left[x + \frac{V_{x} - 1}{k}, x + \frac{V_{x}}{k}\right]$

where V_x has uniform distribution over [0,1].

$$\tilde{s}_{\mathbb{U},\infty}(x) = \mathbb{E}_{\mathbb{U}}[\tilde{s}_{\mathbb{U}}(x)]
= k \int_{0}^{1} s^{*}(t) \mathbb{P}\left(x + \frac{V_{x} - 1}{k} \leqslant t < x + \frac{V_{x}}{k}\right) dt
= k \int_{0}^{1} s^{*}(t) \underbrace{\mathbb{P}(k(t - x) < V_{x} \leqslant k(t - x) + 1)}_{=h_{k}(x - t) \text{ if } 1/k \leqslant x \leqslant 1 - 1/k} dt$$

Analysis of the approximation error, p=1, $x\in\left[rac{1}{k},1-rac{1}{k} ight]$

(H2) s^* twice differentiable over (0,1) and $s^{*''}$ bounded

Taylor-Lagrange formula: for every $t \in (0,1)$, some $c_{t,x} \in (0,1)$ exists such that

$$s^*(t) - s^*(x) = s^{*'}(x)(t-x) + \frac{1}{2}s^{*''}(c_{t,x})(t-x)^2$$

Analysis of the approximation error, p=1, $x \in \left[\frac{1}{k}, 1 - \frac{1}{k}\right]$

(H2) s^* twice differentiable over (0,1) and $s^{*''}$ bounded

Taylor-Lagrange formula: for every $t \in (0,1)$, some $c_{t,x} \in (0,1)$ exists such that

$$s^*(t) - s^*(x) = s^{*\prime}(x)(t-x) + \frac{1}{2}s^{*\prime\prime}(c_{t,x})(t-x)^2$$

Therefore,

$$\tilde{s}_{\mathbb{U}}(x) - s^{*}(x) = k \int_{x + \frac{V_{x} - 1}{k}}^{x + \frac{V_{x}}{k}} (s^{*}(t) - s^{*}(x)) dt
= k s^{*}(x) \int_{x + \frac{V_{x} - 1}{k}}^{x + \frac{V_{x}}{k}} (t - x) dt + R_{1}(x)
= \frac{s^{*}(x)}{k} \left(V_{x} - \frac{1}{2} \right) + R_{1}(x)$$

where
$$R_1(x) = \frac{k}{2} \int_{x+\frac{V_x}{V_x-1}}^{x+\frac{V_x}{k}} s^{*\prime\prime}(c_{t,x})(t-x)^2 dt$$
.

Analysis of the approximation error, p=1, $x\in\left[rac{1}{k},1-rac{1}{k} ight]$

(H2)
$$s^*$$
 twice differentiable over $(0,1)$ and $s^{*''}$ bounded
$$\tilde{s}_{\mathbb{U}}(x) - s^*(x) = \frac{s^{*'}(x)}{k} \left(V_x - \frac{1}{2}\right) + R_1(x)$$

where
$$R_1(x) = \frac{k}{2} \int_{x+\frac{V_x}{k}}^{x+\frac{V_x}{k}} s^{\star \prime \prime} (c_{t,x}) (t-x)^2 dt$$
.

Hence,

Random forests

$$\mathcal{B}_{\mathcal{U}_{k}^{\text{toy}},\infty}(x) = \left(\mathbb{E}_{\mathbb{U}}[\tilde{s}_{\mathbb{U}}(x) - s^{\star}(x)]\right)^{2} = \left(\mathbb{E}_{\mathbb{U}}[R_{1}(x)]\right)^{2} \leqslant \frac{\square}{k^{4}}$$

and

$$\mathcal{V}_{\mathcal{U}_k^{\text{toy}}}(x) = \text{var}\bigg(\frac{s^{\star\prime}(x)}{k}\bigg(V_x - \frac{1}{2}\bigg) + R_1(x)\bigg) \underset{k \to +\infty}{\sim} \frac{s^{\star\prime}(x)^2 \operatorname{var}(V_x)}{k^2} \,.$$

$$(H\theta)$$
 $s^* \in \mathcal{C}^{1,(\theta-1)}(\mathcal{X})$ Hölder space, $\theta \in [1,2]$

$$\mathcal{B}_{\mathcal{U}_k^{ ext{toy}},\infty}(x) = \left(\mathbb{E}_{\mathbb{U}}[ilde{s}_{\mathbb{U}}(x) - s^\star(x)]
ight)^2 \leqslant rac{\square}{k^{2 heta/p}} \qquad \mathcal{V}_{\mathcal{U}_k^{ ext{toy}}}(x) \underset{k o +\infty}{\sim} rac{\square}{k^{2/p}}$$

Proposition (A. & Genuer, 2014–2020)

Assuming (H
$$\theta$$
), $\theta \in [1, 2]$, $\forall x \in \left[\frac{1}{k}, 1 - \frac{1}{k}\right]^p$,

$$\mathcal{B}_{\mathcal{U}_{k}^{\text{toy}},1}(x) \underset{k \to +\infty}{\sim} \frac{\square}{\frac{k^{2/p}}} \qquad \mathcal{B}_{\mathcal{U}_{k}^{\text{toy}},\infty}(x) \leqslant \frac{\square}{\frac{k^{2\theta/p}}{}}$$

$$\int_{\left[\frac{1}{k},1-\frac{1}{k}\right]^p} \mathcal{B}_{\mathcal{U}_k^{\text{toy}},1}(x) \, \mathrm{d}x \underset{k \to +\infty}{\sim} \frac{\square}{\frac{k^{2/p}}} \qquad \int_{\left[\frac{1}{k},1-\frac{1}{k}\right]^p} \mathcal{B}_{\mathcal{U}_k^{\text{toy}},\infty}(x) \, \mathrm{d}x \leqslant \frac{\square}{\frac{k^{2\theta/p}}}$$

Rate $k^{-4/p}$ is tight assuming θ -Hölder smoothness, $\theta > 2$.

Random forests

General fact (Jensen's inequality):

$$\mathbb{E}\Big[\big(\widehat{\mathsf{s}}_{\mathbb{U},\,\infty}(X)-\widetilde{\mathsf{s}}_{\mathbb{U},\,\infty}(X)\big)^2\Big]\leqslant \mathbb{E}\Big[\big(\widehat{\mathsf{s}}_{\mathbb{U}}(X)-\widetilde{\mathsf{s}}_{\mathbb{U}}(X)\big)^2\Big]$$

Estimation error

General fact (Jensen's inequality):

$$\mathbb{E}\Big[\big(\widehat{\mathfrak{s}}_{\mathbb{U},\,\infty}(X)-\widetilde{\mathfrak{s}}_{\mathbb{U},\,\infty}(X)\big)^2\Big]\leqslant \mathbb{E}\Big[\big(\widehat{\mathfrak{s}}_{\mathbb{U}}(X)-\widetilde{\mathfrak{s}}_{\mathbb{U}}(X)\big)^2\Big]$$

For the toy forest, without any resampling for computing labels and assuming that $var(Y|X) = \sigma^2$:

$$\mathbb{E}\left[\left(\widehat{s}_{\mathbb{U}}(X) - \widetilde{s}_{\mathbb{U}}(X)\right)^{2}\right] \approx \frac{\sigma^{2}k}{n}$$

$$\mathbb{E}\left[\left(\widehat{s}_{\mathbb{U},\infty}(X) - \widetilde{s}_{\mathbb{U},\infty}(X)\right)^{2}\right] \approx \frac{2}{3}\frac{\sigma^{2}k}{n}$$

(A. & Genuer, 2016)

Random forests

Single tree

Infinite forest

$$(q = 1)$$

$$(q = \infty)$$

$$\mathbb{E}\Big[\big(\widehat{s}_{\mathbb{U}^{1\cdots q}}(x)-s^{\star}(x)\big)^2\Big]$$

$$\approx \frac{c_1(s^*,x)}{k^{2/p}} + \frac{\sigma^2 k}{n} \quad \leqslant \frac{c'_{\theta}(s^*,x)}{k^{2\theta/p}} + \frac{2\sigma^2 k}{3n}$$

$$c_1(s^*,x) = \frac{s^{*'}(x)^2}{12}$$
.

Assumptions:

- $x \in (0,1)^p$ far from boundary
- $(H\theta) \ s^* \in C^{1,(\theta-1)}(\mathcal{X}), \ \theta \in [1,2]$
- X uniform over $[0,1)^p$
- $\operatorname{var}(Y|X) = \sigma^2$
- no resampling for computing labels

Rates of convergence

Random forests

Corollary: risk convergence rates (far from boundaries, with $k = k_n^*$ optimal), under (H θ), $\theta \in [1, 2]$:

Tree risk
$$\geqslant \square n^{-2/(2+p)}$$

if
$$s^*$$
 not constant, $\theta > 1$

Infinite forest risk
$$\leq \prod n^{-2\theta/(2\theta+p)}$$

$$\Rightarrow$$
 minimax C^{θ} , $\theta \in [1, 2]$

Corollary: risk convergence rates (far from boundaries, with $k = k_n^*$ optimal), under (H θ), $\theta \in [1, 2]$:

Tree risk
$$\geqslant \square n^{-2/(2+p)}$$
 if s^* not constant, $\theta > 1$
Infinite forest risk $\leqslant \square n^{-2\theta/(2\theta+p)}$ \Rightarrow minimax \mathcal{C}^{θ} , $\theta \in [1,2]$

Remarks:

- $q \geqslant \Box (k_n^*)^2$ is sufficient to get an "infinite" forest
- with subsampling a out of n for computing labels: estimation error of a single tree $\frac{\sigma^2 k}{a}$ instead of $\frac{\sigma^2 k}{n}$; no change for infinite forest

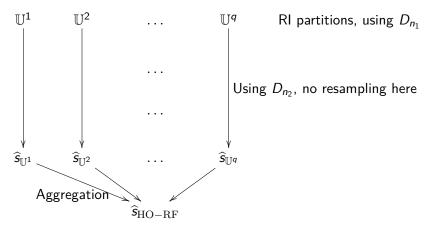
Outline

- Random forests
- 2 Purely random forests
- 3 Toy forests
- 4 Hold-out random forests

Random forests

(2.22, 2022)

Split D_n into D_{n_1} and D_{n_2}



 \Rightarrow purely random forest $_{34}$

Numerical experiments: framework

Data generation:

Random forests

$$X_i \sim \mathcal{U}([0,1]^p)$$
 $Y_i = s^*(X_i) + \varepsilon_i$
 $\varepsilon_i \sim \mathcal{N}(0,\sigma^2)$ $\sigma^2 = 1/16$

$$s^*: \mathbf{x} \in [0,1]^p \mapsto \frac{1}{10} \times \left[10\sin(\pi x_1 x_2) + 20(x_3 - 0.5)^2 + 10x_4 + 5x_5 \right].$$

- Data split: $n_1 = 1280$ $n_2 = 25600$
- Forests definition:

nodesize = 1

$$k \in \{2^5, 2^6, 2^7, 2^8, 2^9\}$$

"Large" forests are made of q = k trees.

• Compute integrated approximation/estimation errors

Numerical experiments: results (p = 5)

	Single tree	Large forest
No bootstrap $mtry = p$	$\frac{0.13}{k^{0.17}} + \frac{1.04\sigma^2 k}{n_2}$	$\frac{0.13}{k^{0.17}} + \frac{1.04\sigma^2 k}{n_2}$
$\frac{Bootstrap}{mtry = p}$	$\frac{0.14}{k^{0.17}} + \frac{1.06\sigma^2 k}{n_2}$	$\frac{0.15}{k^{0.29}} + \frac{0.08\sigma^2 k}{n_2}$
No bootstrap $mtry = \lfloor p/3 \rfloor$	$\frac{0.23}{k^{0.19}} + \frac{1.01\sigma^2 k}{n_2}$	$\frac{0.06}{k^{0.31}} + \frac{0.06\sigma^2k}{n_2}$
Bootstrap $mtry = \lfloor p/3 \rfloor$	$\frac{0.25}{k^{0.20}} + \frac{1.02\sigma^2 k}{n_2}$	$\frac{0.06}{k^{0.34}} + \frac{0.05\sigma^2k}{n_2}$

$$\frac{2}{2+p}\approx 0.286 \qquad \qquad \frac{4}{4+p}\approx 0.444$$

	Single tree	Large forest
No bootstrap $mtry = p$	$\frac{0.11}{k^{0.12}} + \frac{1.03\sigma^2 k}{n_2}$	$\frac{0.11}{k^{0.12}} + \frac{1.03\sigma^2k}{n_2}$
$\frac{Bootstrap}{mtry = p}$	$\frac{0.11}{k^{0.11}} + \frac{1.05\sigma^2k}{n_2}$	$\frac{0.10}{k^{0.19}} + \frac{0.04\sigma^2 k}{n_2}$
No bootstrap $mtry = \lfloor p/3 \rfloor$	$\frac{0.21}{k^{0.18}} + \frac{1.08\sigma^2 k}{n_2}$	$\frac{0.08}{k^{0.25}} + \frac{0.04\sigma^2 k}{n_2}$
Bootstrap $mtry = \lfloor p/3 \rfloor$	$\frac{0.20}{k^{0.16}} + \frac{1.05\sigma^2 k}{n_2}$	$\frac{0.07}{k^{0.26}} + \frac{0.03\sigma^2 k}{n_2}$

$$\frac{2}{2+p} \approx 0.167 \qquad \qquad \frac{4}{4+p} \approx 0.286$$

Conclusion

- Forests improve the order of magnitude of the approximation error, compared to a single tree
- Estimation error seems to change only by a constant factor (at least for toy forests);
 not contradictory with literature: here, we fix k; different picture if nodesize is fixed (+subsampling)

Conclusion

- Forests improve the order of magnitude of the approximation error, compared to a single tree
- Estimation error seems to change only by a constant factor (at least for toy forests);
 not contradictory with literature: here, we fix k; different picture if nodesize is fixed (+subsampling)
- Randomization:
 randomization of labels seems to have no impact;
 strong impact of randomization of partitions (hold-out RF:
 both bootstrap and mtry)

Random forests

Approximation error: generalization

• General result on the approximation error under $(H\theta)$: e.g., roughly, if x is centered in its cell (on average over \mathbb{U}),

tree approx. error $\propto \mathcal{M}_2$ infinite forest approx. error $\propto \mathcal{M}_2^2$

where $\mathcal{M}_2 \approx$ average square distance from x to the boundary of its cell ($\propto k^{-2/p}$ for toy forests)

Approximation error: generalization

• General result on the approximation error under $(H\theta)$: e.g., roughly, if x is centered in its cell (on average over \mathbb{U}),

infinite forest approx. error $\propto \mathcal{M}_2^2$ tree approx. error $\propto \mathcal{M}_2$

where $\mathcal{M}_2 \approx$ average square distance from x to the boundary of its cell ($\propto k^{-2/p}$ for toy forests)

- purely uniformly random forests in dimension 1 (split a random cell, chosen with probability equal to its volume): \approx toy
- balanced purely random forests (full binary tree, uniform splits) in dimension p: $k^{-\alpha}$ (tree) vs. $k^{-2\alpha}$ (forest) where $\alpha = -\log_2\Bigl(1-\frac{1}{2p}\Bigr) \Rightarrow {\rm not\ minimax\ rates!}$
- other PRF studied in the literature: Mondrian forests (Mourtada, Gaïffas & Scornet 2017 & 2020), centered random forests (Biau, 2012; Klusowski, 2018), ...

Open problems / future work

- Theory on approximation error of hold-out RF?
 ⇒ understand the typical shape of the cell that contains x, for a RI tree
 (x centered on average? square distance to boundary?)
- Theory on estimation error of other PRF (beyond toy and PURF), with lower bounds?
 of hold-out RF?
- Extensive numerical experiments? (other functions s^* , ...)