Abstracts

V-fold penalization: an alternative to V-fold cross-validation
SYLVAIN ARLOT

One of the most widely used model selection techniques is V-fold cross-validation (Geisser [Gei75]). It estimates the prediction error of estimators built upon \(n(V - 1)V^{-1} < n \) data, which can be interpreted as overpenalization. From the asymptotical viewpoint, this can be suboptimal (when \(V \) is fixed) and it has to be corrected, for instance following Burman [Bur89]. However, when the sample size is small, it may happen that \(V = 2 \) gives better results than \(V = 10 \), because overpenalization is benefic in some cases [Arl07a]. The choice of \(V \) in V-fold cross-validation can then be a difficult problem.

Following Efron’s resampling heuristics [Efr79], we propose to use a V-fold resampling scheme to define a new penalization procedure, called V-fold penalization ([Arl07b], Chap. 5). It generalizes Burman’s bias correction, and produces a flexible procedure, where \(V \) is decoupled from the overpenalization factor.

In the framework of regression on a random design with heteroscedastic noise, we prove several non-asymptotic results about V-fold subsampling, and more general resampling schemes. In particular, V-fold penalization (with \(V \) fixed) satisfies a non-asymptotic oracle inequality with constant almost one, which implies its asymptotic optimality. Hence, it improves on V-fold cross-validation. Moreover, choosing a particular family of models, we obtain an estimator adaptive to the smoothness of the regression function and the heteroscedasticity of the noise. Thus, V-fold penalties are more robust than Mallows’ \(C_p \) criterion.

The theoretical results concerning V-fold penalties stay valid for resampling penalties with general exchangeable weights ([Arl07b], Chap. 6). In particular, they can be applied to V-fold penalties with \(V = n \), as well as bootstrap penalties (defined by Efron [Efr83]). This extends an asymptotical result on bootstrap penalties in another framework (Shibata [Shi97]). Using independent Rademacher weights, one obtain a localized version of Rademacher complexities (Koltchinskii [Kol01] ; Bartlett, Boucheron and Lugosi [BBL02]) that is much easier to compute than local Rademacher complexities (Lugosi and Wegkamp [LW04] ; Koltchinskii [Kol06]).

Although we have to assume a particular structure for the models (i.e. they are all made of histograms), we believe that the same results hold in a much more general framework. We for instance have partial results for general bounded regression and binary classification ([Arl07b], Chap. 7).

A simulation study shows that V-fold penalties behave quite well in several cases. Moreover, they often outperform V-fold cross-validation and Mallows’ \(C_p \) penalties, in particular in difficult heteroscedastic situations. Their flexibility allows to improve performances when the signal-to-noise ratio is small; this is obtained by taking \(V \) large enough, together with overpenalization.
The choice of \(V \) also appears to be quite easier: the performances of \(V \)-fold penalties are always better when \(V \) increases. Then, \(V \) has only to be chosen according to the computational complexity of the procedure, which is exactly the same as the one of \(V \)-fold cross-validation.

References

Reporter: Ursula Gather