Large-scale machine learning and convex optimization

Francis Bach

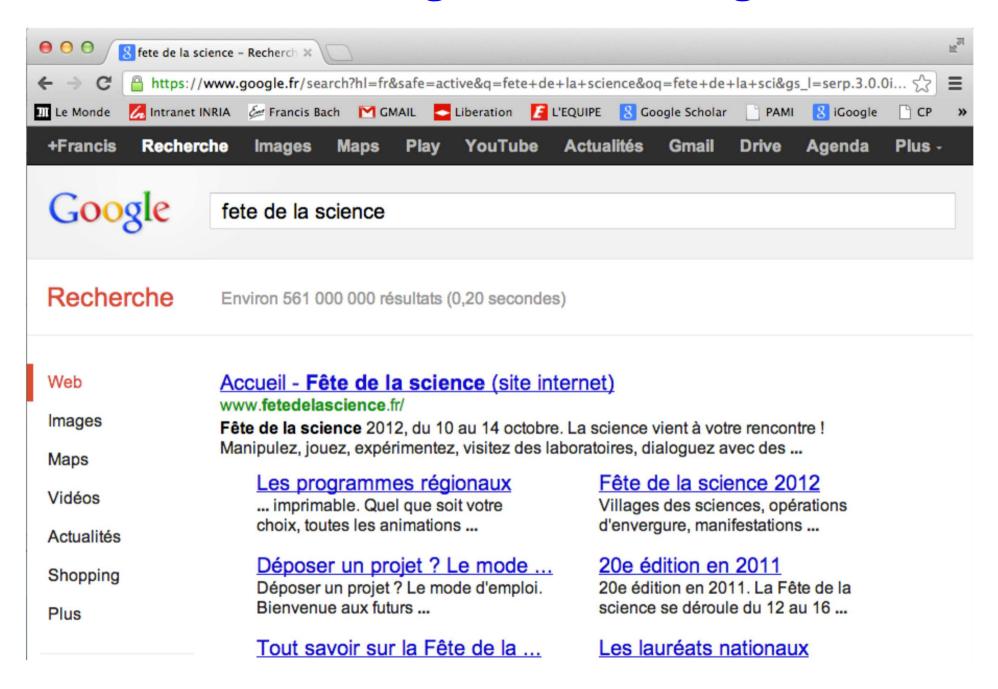
INRIA - Ecole Normale Supérieure, Paris, France

Apprentissage Statistique, Univ. Paris-Sud - March 2015

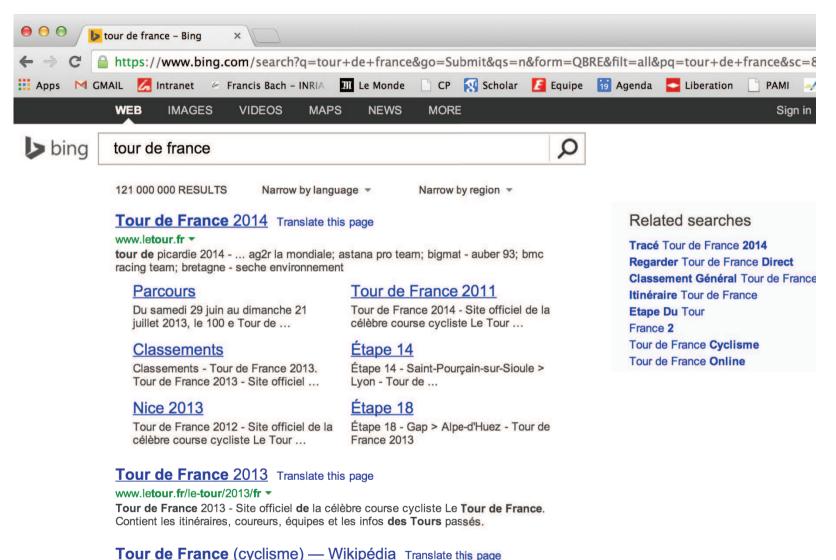
"Big data" revolution? A new scientific context

- Data everywhere: size does not (always) matter
- Science and industry
- Size and variety
- Learning from examples
 - n observations in dimension d

Search engines - advertising



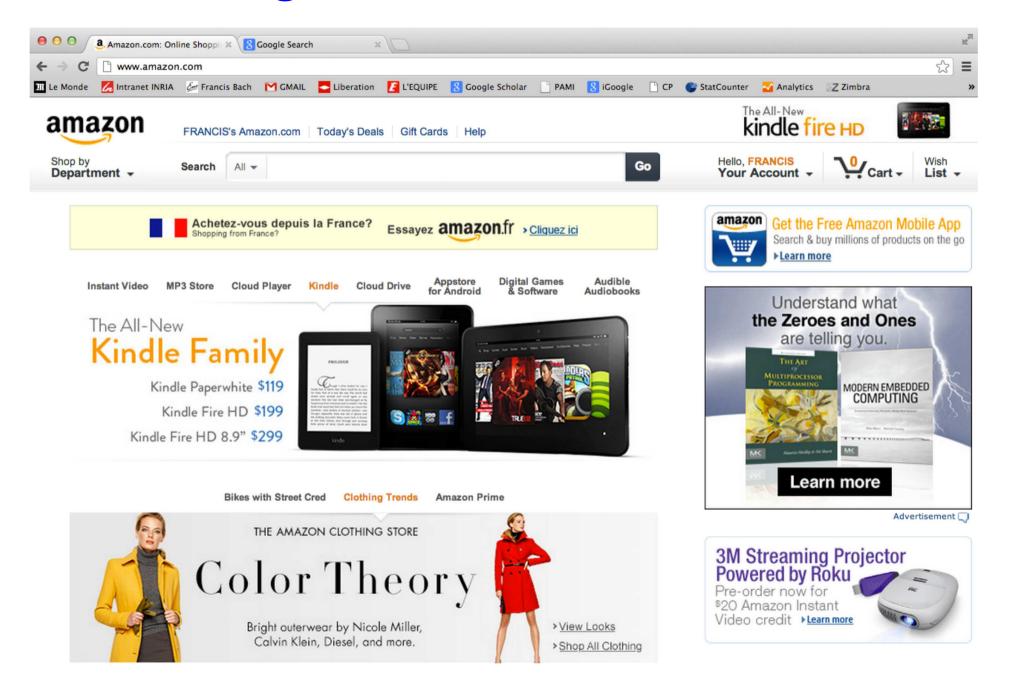
Search engines - Advertising



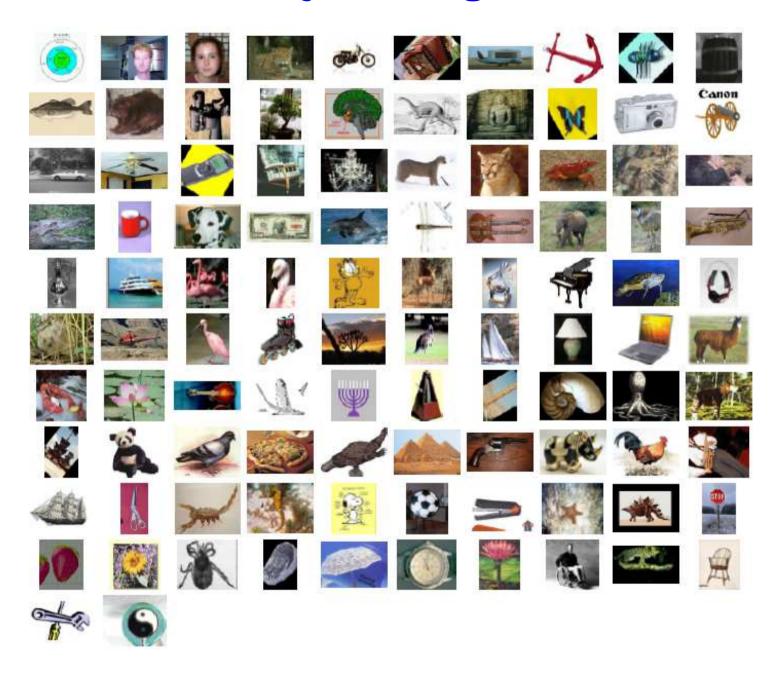
fr.wikipedia.org/wiki/Tour_de_France_(cyclisme) ▼

Le **Tour de France** est une compétition cycliste par étapes créée en 1903 par Henri Desgrange et Géo Lefèvre, chef **de** la rubrique cyclisme du journal L'Auto. Histoire · Médiatisation du ... · Équipes et participation

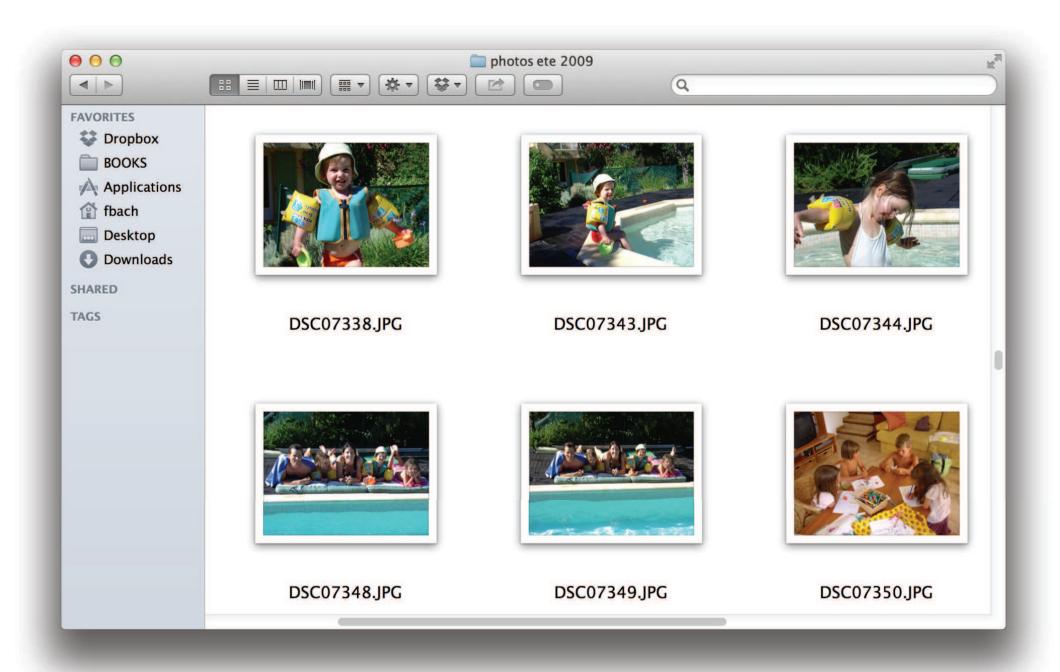
Marketing - Personalized recommendation



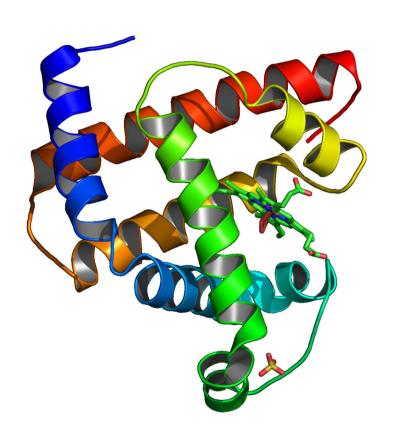
Visual object recognition



Personal photos



Bioinformatics



- Protein: Crucial elements of cell life
- Massive data: 2 millions for humans
- Complex data

Context Machine learning for "big data"

- Large-scale machine learning: large d, large n
 - -d: dimension of each observation (input)
 - -n: number of observations
- Examples: computer vision, bioinformatics, advertising

Context Machine learning for "big data"

- Large-scale machine learning: large d, large n
 - -d: dimension of each observation (input)
 - -n: number of observations
- Examples: computer vision, bioinformatics, advertising
- Ideal running-time complexity: O(dn)

Context Machine learning for "big data"

- Large-scale machine learning: large d, large n
 - -d: dimension of each observation (input)
 - -n: number of observations
- Examples: computer vision, bioinformatics, advertising
- Ideal running-time complexity: O(dn)
- Going back to simple methods
 - Stochastic gradient methods (Robbins and Monro, 1951)
 - Mixing statistics and optimization

Outline

1. Large-scale machine learning and optimization

- Traditional statistical analysis
- Classical methods for convex optimization

2. Non-smooth stochastic approximation

- Stochastic (sub)gradient and averaging
- Non-asymptotic results and lower bounds
- Strongly convex vs. non-strongly convex

3. Smooth stochastic approximation algorithms

- Asymptotic and non-asymptotic results
- 4. Beyond decaying step-sizes
- 5. Finite data sets

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\theta^{\top}\Phi(x)$ of features $\Phi(x) \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

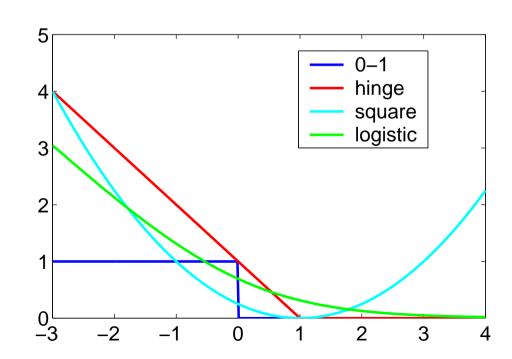
$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^\top \Phi(x_i)) \quad + \quad \mu \Omega(\theta)$$

Usual losses

- Regression: $y \in \mathbb{R}$, prediction $\hat{y} = \theta^{\top} \Phi(x)$
 - quadratic loss $\frac{1}{2}(y-\hat{y})^2 = \frac{1}{2}(y-\theta^\top\Phi(x))^2$

Usual losses

- Regression: $y \in \mathbb{R}$, prediction $\hat{y} = \theta^{\top} \Phi(x)$
 - quadratic loss $\frac{1}{2}(y-\hat{y})^2 = \frac{1}{2}(y-\theta^\top\Phi(x))^2$
- Classification : $y \in \{-1, 1\}$, prediction $\hat{y} = \text{sign}(\theta^{\top} \Phi(x))$
 - loss of the form $\ell(y \theta^{\top} \Phi(x))$
 - "True" 0-1 loss: $\ell(y\,\theta^{\top}\Phi(x))=1_{y\,\theta^{\top}\Phi(x)<0}$
 - Usual convex losses:



Main motivating examples

• Support vector machine (hinge loss)

$$\ell(Y, \theta^{\top} \Phi(X)) = \max\{1 - Y \theta^{\top} \Phi(X), 0\}$$

Logistic regression

$$\ell(Y, \theta^{\top} \Phi(X)) = \log(1 + \exp(-Y\theta^{\top} \Phi(X)))$$

• Least-squares regression

$$\ell(Y, \theta^{\top} \Phi(X)) = \frac{1}{2} (Y - \theta^{\top} \Phi(X))^2$$

Usual regularizers

- Main goal: avoid overfitting
- (squared) Euclidean norm: $\|\theta\|_2^2 = \sum_{j=1}^d |\theta_j|^2$
 - Numerically well-behaved
 - Representer theorem and kernel methods : $\theta = \sum_{i=1}^{n} \alpha_i \Phi(x_i)$
 - See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and Cristianini (2004)

• Sparsity-inducing norms

- Main example: ℓ_1 -norm $\|\theta\|_1 = \sum_{j=1}^d |\theta_j|$
- Perform model selection as well as regularization
- Non-smooth optimization and structured sparsity
- See, e.g., Bach, Jenatton, Mairal, and Obozinski (2011, 2012)

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\theta^{\top}\Phi(x)$ of features $\Phi(x) \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^\top \Phi(x_i)) \quad + \quad \mu \Omega(\theta)$$

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\theta^{\top}\Phi(x)$ of features $\Phi(x) \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^\top \Phi(x_i)) + \mu \Omega(\theta)$$

- Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$ training cost
- Expected risk: $f(\theta) = \mathbb{E}_{(x,y)} \ell(y, \theta^{\top} \Phi(x))$ testing cost
- Two fundamental questions: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\theta^{\top}\Phi(x)$ of features $\Phi(x) \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^\top \Phi(x_i)) + \mu \Omega(\theta)$$

- Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$ training cost
- Expected risk: $f(\theta) = \mathbb{E}_{(x,y)} \ell(y, \theta^{\top} \Phi(x))$ testing cost
- Two fundamental questions: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$
 - May be tackled simultaneously

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as a linear function $\theta^{\top}\Phi(x)$ of features $\Phi(x) \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^\top \Phi(x_i)) \text{ such that } \Omega(\theta) \leqslant D$$

convex data fitting term + constraint

- Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$ training cost
- Expected risk: $f(\theta) = \mathbb{E}_{(x,y)} \ell(y, \theta^{\top} \Phi(x))$ testing cost
- Two fundamental questions: (1) computing $\hat{\theta}$ and (2) analyzing $\hat{\theta}$
 - May be tackled simultaneously

General assumptions

- Data: n observations $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, $i = 1, \ldots, n$, i.i.d.
- Bounded features $\Phi(x) \in \mathbb{R}^d$: $\|\Phi(x)\|_2 \leqslant R$
- Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$ training cost
- Expected risk: $f(\theta) = \mathbb{E}_{(x,y)} \ell(y, \theta^{\top} \Phi(x))$ testing cost
- Loss for a single observation: $f_i(\theta) = \ell(y_i, \theta^\top \Phi(x_i))$ $\Rightarrow \forall i, \ f(\theta) = \mathbb{E}f_i(\theta)$
- Properties of f_i, f, \hat{f}
 - Convex on \mathbb{R}^d
 - Additional regularity assumptions: Lipschitz-continuity, smoothness and strong convexity

Lipschitz continuity

• Bounded gradients of f (Lipschitz-continuity): the function f if convex, differentiable and has (sub)gradients uniformly bounded by B on the ball of center 0 and radius D:

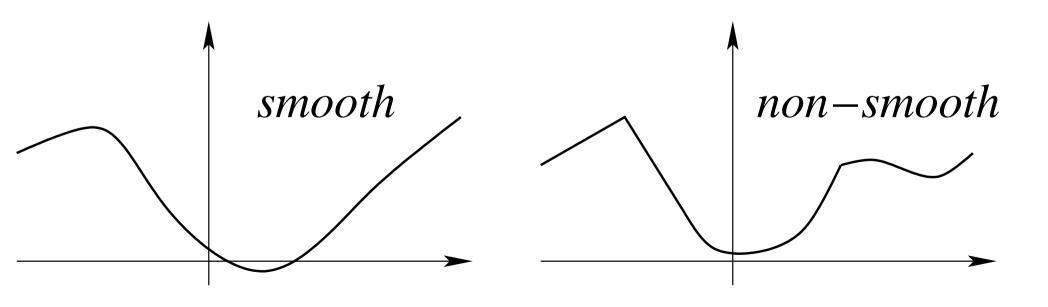
$$\forall \theta \in \mathbb{R}^d, \|\theta\|_2 \leqslant D \Rightarrow \|f'(\theta)\|_2 \leqslant B$$

- Machine learning
 - with $f(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$
 - G-Lipschitz loss and R-bounded data: B=GR

ullet A function $f:\mathbb{R}^d o \mathbb{R}$ is L-smooth if and only if it is differentiable and its gradient is L-Lipschitz-continuous

$$\forall \theta_1, \theta_2 \in \mathbb{R}^d, \|f'(\theta_1) - f'(\theta_2)\|_2 \le L \|\theta_1 - \theta_2\|_2$$

• If f is twice differentiable: $\forall \theta \in \mathbb{R}^d, \ f''(\theta) \leq L \cdot Id$



ullet A function $f:\mathbb{R}^d o \mathbb{R}$ is L-smooth if and only if it is differentiable and its gradient is L-Lipschitz-continuous

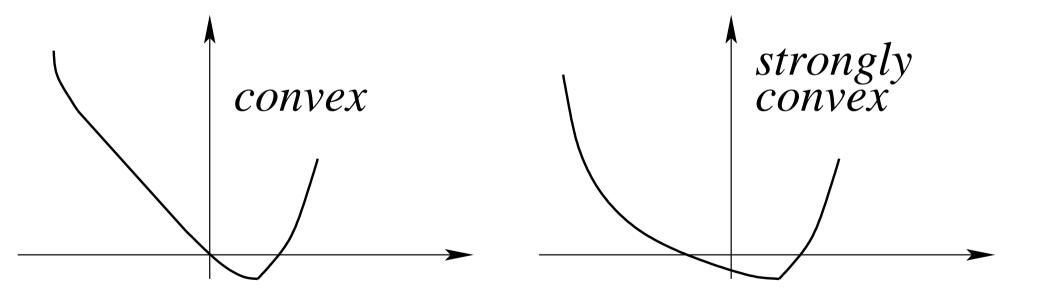
$$\forall \theta_1, \theta_2 \in \mathbb{R}^d, \|f'(\theta_1) - f'(\theta_2)\|_2 \leq L \|\theta_1 - \theta_2\|_2$$

- If f is twice differentiable: $\forall \theta \in \mathbb{R}^d, f''(\theta) \leq L \cdot Id$
- Machine learning
 - with $f(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$
 - Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top}$
 - ℓ -smooth loss and R-bounded data: $L=\ell R^2$

ullet A function $f:\mathbb{R}^d o \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta_1, \theta_2 \in \mathbb{R}^d, \ f(\theta_1) \geqslant f(\theta_2) + f'(\theta_2)^\top (\theta_1 - \theta_2) + \frac{\mu}{2} \|\theta_1 - \theta_2\|_2^2$$

• If f is twice differentiable: $\forall \theta \in \mathbb{R}^d, f''(\theta) \succcurlyeq \mu \cdot \mathrm{Id}$



ullet A function $f:\mathbb{R}^d o \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta_1, \theta_2 \in \mathbb{R}^d, \ f(\theta_1) \geqslant f(\theta_2) + f'(\theta_2)^\top (\theta_1 - \theta_2) + \frac{\mu}{2} \|\theta_1 - \theta_2\|_2^2$$

• If f is twice differentiable: $\forall \theta \in \mathbb{R}^d, f''(\theta) \succcurlyeq \mu \cdot \mathrm{Id}$

Machine learning

- with $f(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$
- Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top}$
- Data with invertible covariance matrix (low correlation/dimension)

ullet A function $f:\mathbb{R}^d o \mathbb{R}$ is μ -strongly convex if and only if

$$\forall \theta_1, \theta_2 \in \mathbb{R}^d, \ f(\theta_1) \geqslant f(\theta_2) + f'(\theta_2)^\top (\theta_1 - \theta_2) + \frac{\mu}{2} \|\theta_1 - \theta_2\|_3^2$$

• If f is twice differentiable: $\forall \theta \in \mathbb{R}^d, f''(\theta) \succcurlyeq \mu \cdot \mathrm{Id}$

Machine learning

- with $f(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$
- Hessian \approx covariance matrix $\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top}$
- Data with invertible covariance matrix (low correlation/dimension)
- ullet Adding regularization by $\frac{\mu}{2} \|\theta\|^2$
 - creates additional bias unless μ is small

Summary of smoothness/convexity assumptions

• Bounded gradients of f (Lipschitz-continuity): the function f if convex, differentiable and has (sub)gradients uniformly bounded by B on the ball of center 0 and radius D:

$$\forall \theta \in \mathbb{R}^d, \|\theta\|_2 \leqslant D \Rightarrow \|f'(\theta)\|_2 \leqslant B$$

• Smoothness of f: the function f is convex, differentiable with L-Lipschitz-continuous gradient f':

$$\forall \theta_1, \theta_2 \in \mathbb{R}^d, \|f'(\theta_1) - f'(\theta_2)\|_2 \le L \|\theta_1 - \theta_2\|_2$$

• Strong convexity of f: The function f is strongly convex with respect to the norm $\|\cdot\|$, with convexity constant $\mu > 0$:

$$\forall \theta_1, \theta_2 \in \mathbb{R}^d, \ f(\theta_1) \geqslant f(\theta_2) + f'(\theta_2)^\top (\theta_1 - \theta_2) + \frac{\mu}{2} \|\theta_1 - \theta_2\|_2^2$$

Analysis of empirical risk minimization

• Approximation and estimation errors: $C = \{\theta \in \mathbb{R}^d, \Omega(\theta) \leq D\}$

$$f(\hat{\theta}) - \min_{\theta \in \mathbb{R}^d} f(\theta) = \left[f(\hat{\theta}) - \min_{\theta \in \mathcal{C}} f(\theta) \right] + \left[\min_{\theta \in \mathcal{C}} f(\theta) - \min_{\theta \in \mathbb{R}^d} f(\theta) \right]$$

- NB: may replace $\min_{\theta \in \mathbb{R}^d} f(\theta)$ by best (non-linear) predictions
- 1. Uniform deviation bounds, with $|\hat{\theta} \in \arg\min_{\theta \in \mathcal{C}} \hat{f}(\theta)$

$$\hat{\theta} \in \arg\min_{\theta \in \mathcal{C}} \hat{f}(\theta)$$

$$f(\hat{\theta}) - \min_{\theta \in \mathcal{C}} f(\theta) \le 2 \sup_{\theta \in \mathcal{C}} |\hat{f}(\theta) - f(\theta)| \quad (proof)$$

- Typically slow rate $O(\frac{1}{\sqrt{n}})$
- 2. More refined concentration results with faster rates

Motivation from least-squares

• For least-squares, we have $\ell(y, \theta^{\top} \Phi(x)) = \frac{1}{2} (y - \theta^{\top} \Phi(x))^2$, and

$$f(\theta) - \hat{f}(\theta) = \frac{1}{2} \theta^{\top} \left(\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top} - \mathbb{E}\Phi(X) \Phi(X)^{\top} \right) \theta$$

$$-\theta^{\top} \left(\frac{1}{n} \sum_{i=1}^{n} y_i \Phi(x_i) - \mathbb{E}Y \Phi(X) \right) + \frac{1}{2} \left(\frac{1}{n} \sum_{i=1}^{n} y_i^2 - \mathbb{E}Y^2 \right),$$

$$\sup_{\|\theta\|_2 \leqslant D} |f(\theta) - \hat{f}(\theta)| \leqslant \frac{D^2}{2} \left\| \frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \Phi(x_i)^{\top} - \mathbb{E}\Phi(X) \Phi(X)^{\top} \right\|_{\text{op}}$$

$$+ D \left\| \frac{1}{n} \sum_{i=1}^{n} y_i \Phi(x_i) - \mathbb{E}Y \Phi(X) \right\|_2 + \frac{1}{2} \left| \frac{1}{n} \sum_{i=1}^{n} y_i^2 - \mathbb{E}Y^2 \right|,$$

$$\sup_{\|\theta\|_2\leqslant D}|f(\theta)-\hat{f}(\theta)|\ \leqslant\ \frac{O(1/\sqrt{n})}{} \ \text{with high probability}$$

Slow rate for supervised learning

- Assumptions (f is the expected risk, \hat{f} the empirical risk)
 - $-\Omega(\theta) = \|\theta\|_2$ (Euclidean norm)
 - "Linear" predictors: $\theta(x) = \theta^{\top} \Phi(x)$, with $\|\Phi(x)\|_2 \leqslant R$ a.s.
 - G-Lipschitz loss: f and \hat{f} are GR-Lipschitz on $\mathcal{C} = \{\|\theta\|_2 \leqslant D\}$
 - No assumptions regarding convexity

Slow rate for supervised learning

- Assumptions (f is the expected risk, \hat{f} the empirical risk)
 - $-\Omega(\theta) = \|\theta\|_2$ (Euclidean norm)
 - "Linear" predictors: $\theta(x) = \theta^{\top} \Phi(x)$, with $\|\Phi(x)\|_2 \leqslant R$ a.s.
 - G-Lipschitz loss: f and \hat{f} are GR-Lipschitz on $\mathcal{C} = \{\|\theta\|_2 \leqslant D\}$
 - No assumptions regarding convexity
- ullet With probability greater than $1-\delta$

$$\sup_{\theta \in \mathcal{C}} |\hat{f}(\theta) - f(\theta)| \leqslant \frac{GRD}{\sqrt{n}} \left[2 + \sqrt{2 \log \frac{2}{\delta}} \right]$$

- Expectated estimation error: $\mathbb{E} \big[\sup_{\theta \in \mathcal{C}} |\hat{f}(\theta) f(\theta)| \big] \leqslant \frac{4GRD}{\sqrt{n}}$
- Using Rademacher averages (see, e.g., Boucheron et al., 2005)
- Lipschitz functions ⇒ slow rate

Symmetrization with Rademacher variables

• Let $\mathcal{D}' = \{x_1', y_1', \dots, x_n', y_n'\}$ an independent copy of the data $\mathcal{D} = \{x_1, y_1, \dots, x_n, y_n\}$, with corresponding loss functions $f_i'(\theta)$

$$\begin{split} \mathbb{E} \big[\sup_{\theta \in \Theta} \big| f(\theta) - \hat{f}(\theta) \big| \big] &= \mathbb{E} \big[\sup_{\theta \in \Theta} \bigg(f(\theta) - \frac{1}{n} \sum_{i=1}^n f_i(\theta) \bigg) \big] \\ &= \mathbb{E} \bigg[\sup_{\theta \in \Theta} \bigg| \frac{1}{n} \sum_{i=1}^n \mathbb{E} \big(f_i'(\theta) - f_i(\theta) \big| \mathcal{D} \big) \bigg| \bigg] \\ &\leqslant \mathbb{E} \bigg[\mathbb{E} \bigg[\sup_{\theta \in \Theta} \bigg| \frac{1}{n} \sum_{i=1}^n \big(f_i'(\theta) - f_i(\theta) \big| \bigg| \mathcal{D} \bigg] \bigg] \\ &= \mathbb{E} \bigg[\sup_{\theta \in \Theta} \bigg| \frac{1}{n} \sum_{i=1}^n \big(f_i'(\theta) - f_i(\theta) \big) \bigg| \bigg] \\ &= \mathbb{E} \bigg[\sup_{\theta \in \Theta} \bigg| \frac{1}{n} \sum_{i=1}^n \varepsilon_i \big(f_i'(\theta) - f_i(\theta) \big) \bigg| \bigg] \quad \text{with } \varepsilon_i \text{ uniform in } \{-1, 1\} \\ &\leqslant \mathbb{E} \bigg[\sup_{\theta \in \Theta} \bigg| \frac{1}{n} \sum_{i=1}^n \varepsilon_i f_i(\theta) \bigg| \bigg] = \text{Rademacher complexity} \end{split}$$

Rademacher complexity

• Define the Rademacher complexity of the class of functions $(X,Y)\mapsto \ell(Y,\theta^{\top}\Phi(X))$ as

$$R_n = \mathbb{E}\left[\sup_{\theta \in \Theta} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i f_i(\theta) \right| \right].$$

- ullet Note two expectations, with respect to ${\mathcal D}$ and with respect to ${arepsilon}$
- Main property:

$$\mathbb{E}\left[\sup_{\theta\in\Theta}\left|f(\theta)-\hat{f}(\theta)\right|\right]\leqslant 2R_n$$

From Rademacher complexity to uniform bound

- Let $Z = \sup_{\theta \in \Theta} |f(\theta) \hat{f}(\theta)|$
- By changing the pair (x_i, y_i) , Z may only change by

$$\frac{2}{n}\sup|\ell(Y,\theta^{\top}\Phi(X))| \leqslant \frac{2}{n}\big(\sup|\ell(Y,0)| + GRD\big) \leqslant \frac{2}{n}\big(\ell_0 + GRD\big) = c$$
 with $\sup|\ell(Y,0)| = \ell_0$

• MacDiarmid inequality: with probability greater than $1 - \delta$,

$$Z \leqslant \mathbb{E}Z + \sqrt{\frac{n}{2}}c \cdot \sqrt{\log \frac{1}{\delta}} \leqslant 2R_n + \frac{\sqrt{2}}{\sqrt{n}}(\ell_0 + GRD)\sqrt{\log \frac{1}{\delta}}$$

Bounding the Rademacher average - I

• We have, with $\varphi_i(u) = \ell(y_i, u) - \ell(y_i, 0)$ is almost surely B-Lipschitz:

$$R_{n} = \mathbb{E}\left[\sup_{\theta \in \Theta} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f_{i}(\theta) \right| \right]$$

$$\leq \mathbb{E}\left[\sup_{\theta \in \Theta} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f_{i}(0) \right| \right] + \mathbb{E}\left[\sup_{\theta \in \Theta} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \left[f_{i}(\theta) - f_{i}(0) \right] \right| \right]$$

$$\leq \frac{\ell_{0}}{\sqrt{n}} + \mathbb{E}\left[\sup_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \left[f_{i}(\theta) - f_{i}(0) \right] \right]$$

$$= \frac{\ell_{0}}{\sqrt{n}} + \mathbb{E}\left[\sup_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \varphi_{i}(\theta^{\top} \Phi(x_{i})) \right]$$

• Using Ledoux-Talagrand concentration results for Rademacher averages (since φ_i is G-Lipschitz, we get:

$$R_n \leqslant \frac{\ell_0}{\sqrt{n}} + 2G \cdot \mathbb{E} \left[\sup_{\|\theta\|_2 \leqslant D} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i \theta^\top \Phi(x_i) \right] \right|$$

Bounding the Rademacher average - II

• We have:

$$R_{n} \leqslant \frac{\ell_{0}}{\sqrt{n}} + 2G\mathbb{E} \left[\sup_{\|\theta\|_{2} \leqslant D} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \theta^{\top} \Phi(x_{i}) \right| \right]$$

$$= \frac{\ell_{0}}{\sqrt{n}} + 2G\mathbb{E} \left\| D \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \Phi(x_{i}) \right\|_{2}$$

$$\leqslant \frac{\ell_{0}}{\sqrt{n}} + 2GD \sqrt{\mathbb{E} \left\| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \Phi(x_{i}) \right\|_{2}^{2}}$$

$$\leqslant \frac{2(\ell_{0} + GRD)}{\sqrt{n}}$$

ullet Overall, we get, with probability $1-\delta$:

$$\sup_{\theta \in \Theta} |f(\theta) - \hat{f}(\theta)| \le \frac{1}{\sqrt{n}} (\ell_0 + GRD)(4 + \sqrt{2\log \frac{1}{\delta}})$$

Putting it all together

• We have, with probability $1 - \delta$, for all $\theta \in \Theta$:

$$f(\theta) - f(\theta_*) \leq \left[f(\theta) - \hat{f}(\theta) \right] + \left[\hat{f}(\theta) - \min_{\theta' \in \Theta} \hat{f}(\theta') \right] + \left[\min_{\theta' \in \Theta} \hat{f}(\theta') - \hat{f}(\theta_*) \right]$$

$$\leq \frac{2}{\sqrt{n}} (\ell_0 + GRD) (4 + \sqrt{2\log \frac{1}{\delta}}) + \left[\hat{f}(\theta) - \min_{\theta' \in \Theta} \hat{f}(\theta') \right]$$

• Only need to optimize with precision $\frac{2}{\sqrt{n}}(\ell_0 + GRD)$

Slow rate for supervised learning (summary)

- Assumptions (f is the expected risk, \hat{f} the empirical risk)
 - $-\Omega(\theta) = \|\theta\|_2$ (Euclidean norm)
 - "Linear" predictors: $\theta(x) = \theta^{\top} \Phi(x)$, with $\|\Phi(x)\|_2 \leqslant R$ a.s.
 - G-Lipschitz loss: f and \hat{f} are GR-Lipschitz on $\mathcal{C} = \{\|\theta\|_2 \leqslant D\}$
 - No assumptions regarding convexity
- ullet With probability greater than $1-\delta$

$$\sup_{\theta \in \mathcal{C}} |\hat{f}(\theta) - f(\theta)| \leqslant \frac{(\ell_0 + GRD)}{\sqrt{n}} \left[2 + \sqrt{2\log \frac{2}{\delta}} \right]$$

- Expectated estimation error: $\mathbb{E} \big[\sup_{\theta \in \mathcal{C}} |\hat{f}(\theta) f(\theta)| \big] \leqslant \frac{4(\ell_0 + GRD)}{\sqrt{n}}$
- Using Rademacher averages (see, e.g., Boucheron et al., 2005)
- Lipschitz functions ⇒ slow rate

Motivation from mean estimation

• Estimator $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} z_i = \arg\min_{\theta \in \mathbb{R}} \frac{1}{2n} \sum_{i=1}^{n} (\theta - z_i)^2 = \hat{f}(\theta)$

• From before:

$$- f(\theta) = \frac{1}{2} \mathbb{E}(\theta - z)^2 = \frac{1}{2} (\theta - \mathbb{E}z)^2 + \frac{1}{2} \operatorname{var}(z) = \hat{f}(\theta) + O(1/\sqrt{n})$$
$$- f(\hat{\theta}) = \frac{1}{2} (\hat{\theta} - \mathbb{E}z)^2 + \frac{1}{2} \operatorname{var}(z) = f(\mathbb{E}z) + O(1/\sqrt{n})$$

Motivation from mean estimation

- Estimator $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} z_i = \arg\min_{\theta \in \mathbb{R}} \frac{1}{2n} \sum_{i=1}^{n} (\theta z_i)^2 = \hat{f}(\theta)$
- From before:

$$- f(\theta) = \frac{1}{2} \mathbb{E}(\theta - z)^2 = \frac{1}{2} (\theta - \mathbb{E}z)^2 + \frac{1}{2} \operatorname{var}(z) = \hat{f}(\theta) + O(1/\sqrt{n})$$
$$- f(\hat{\theta}) = \frac{1}{2} (\hat{\theta} - \mathbb{E}z)^2 + \frac{1}{2} \operatorname{var}(z) = f(\mathbb{E}z) + O(1/\sqrt{n})$$

More refined/direct bound:

$$f(\hat{\theta}) - f(\mathbb{E}z) = \frac{1}{2}(\hat{\theta} - \mathbb{E}z)^{2}$$

$$\mathbb{E}[f(\hat{\theta}) - f(\mathbb{E}z)] = \frac{1}{2}\mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}z_{i} - \mathbb{E}z\right)^{2} = \frac{1}{2n}\operatorname{var}(z)$$

ullet Bound only at $\hat{ heta}$ + strong convexity

Fast rate for supervised learning

- Assumptions (f is the expected risk, \hat{f} the empirical risk)
 - Same as before (bounded features, Lipschitz loss)
 - Regularized risks: $f^{\mu}(\theta) = f(\theta) + \frac{\mu}{2} \|\theta\|_2^2$ and $\hat{f}^{\mu}(\theta) = \hat{f}(\theta) + \frac{\mu}{2} \|\theta\|_2^2$
 - Convexity
- For any a>0, with probability greater than $1-\delta$, for all $\theta\in\mathbb{R}^d$,

$$f^{\mu}(\theta) - \min_{\eta \in \mathbb{R}^d} f^{\mu}(\eta) \leqslant (1+a)(\hat{f}^{\mu}(\theta) - \min_{\eta \in \mathbb{R}^d} \hat{f}^{\mu}(\eta)) + \frac{8(1+\frac{1}{a})G^2R^2(32 + \log\frac{1}{\delta})}{\mu n}$$

- Results from Sridharan, Srebro, and Shalev-Shwartz (2008)
 - see also Boucheron and Massart (2011) and references therein
- Strongly convex functions ⇒ fast rate
 - Warning: μ should decrease with n to reduce approximation error

Outline

1. Large-scale machine learning and optimization

- Traditional statistical analysis
- Classical methods for convex optimization

2. Non-smooth stochastic approximation

- Stochastic (sub)gradient and averaging
- Non-asymptotic results and lower bounds
- Strongly convex vs. non-strongly convex

3. Smooth stochastic approximation algorithms

- Asymptotic and non-asymptotic results
- 4. Beyond decaying step-sizes
- 5. Finite data sets

Complexity results in convex optimization

- **Assumption**: f convex on \mathbb{R}^d
- Classical generic algorithms
 - (sub)gradient method/descent
 - Accelerated gradient descent
 - Newton method
- ullet Key additional properties of f
 - Lipschitz continuity, smoothness or strong convexity
- Key insight from Bottou and Bousquet (2008)
 - In machine learning, no need to optimize below estimation error
- **Key reference**: Nesterov (2004)

Subgradient method/descent

Assumptions

- f convex and B-Lipschitz-continuous on $\{\|\theta\|_2 \leqslant D\}$
- Algorithm: $\theta_t = \Pi_D \left(\theta_{t-1} \frac{2D}{B\sqrt{t}} f'(\theta_{t-1}) \right)$
 - Π_D : orthogonal projection onto $\{\|\theta\|_2 \leq D\}$
- Bound:

$$f\left(\frac{1}{t}\sum_{k=0}^{t-1}\theta_k\right) - f(\theta_*) \leqslant \frac{2DB}{\sqrt{t}}$$

- Three-line proof
- Best possible convergence rate after O(d) iterations

Subgradient method/descent - proof - I

- Iteration: $\theta_t = \Pi_D(\theta_{t-1} \gamma_t f'(\theta_{t-1}))$ with $\gamma_t = \frac{2D}{B\sqrt{t}}$
- Assumption: $||f'(\theta)||_2 \leqslant B$ and $||\theta||_2 \leqslant D$

$$\|\theta_t - \theta_*\|_2^2 \leqslant \|\theta_{t-1} - \theta_* - \gamma_t f'(\theta_{t-1})\|_2^2 \text{ by contractivity of projections}$$

$$\leqslant \|\theta_{t-1} - \theta_*\|_2^2 + B^2 \gamma_t^2 - 2\gamma_t (\theta_{t-1} - \theta_*)^\top f'(\theta_{t-1}) \text{ because } \|f'(\theta_{t-1})\|_2 \leqslant B$$

$$\leqslant \|\theta_{t-1} - \theta_*\|_2^2 + B^2 \gamma_t^2 - 2\gamma_t [f(\theta_{t-1}) - f(\theta_*)] \text{ (property of subgradients)}$$

leading to

$$f(\theta_{t-1}) - f(\theta_*) \leqslant \frac{B^2 \gamma_t}{2} + \frac{1}{2\gamma_t} [\|\theta_{t-1} - \theta_*\|_2^2 - \|\theta_t - \theta_*\|_2^2]$$

Subgradient method/descent - proof - II

• Starting from $f(\theta_{t-1}) - f(\theta_*) \leqslant \frac{B^2 \gamma_t}{2} + \frac{1}{2\gamma_t} \left[\|\theta_{t-1} - \theta_*\|_2^2 - \|\theta_t - \theta_*\|_2^2 \right]$

$$\begin{split} \sum_{u=1}^{t} \left[f(\theta_{u-1}) - f(\theta_*) \right] \leqslant & \sum_{u=1}^{t} \frac{B^2 \gamma_u}{2} + \sum_{u=1}^{t} \frac{1}{2\gamma_u} \left[\|\theta_{u-1} - \theta_*\|_2^2 - \|\theta_u - \theta_*\|_2^2 \right] \\ &= \sum_{u=1}^{t} \frac{B^2 \gamma_u}{2} + \sum_{u=1}^{t-1} \|\theta_u - \theta_*\|_2^2 \left(\frac{1}{2\gamma_{u+1}} - \frac{1}{2\gamma_u} \right) + \frac{\|\theta_0 - \theta_*\|_2^2}{2\gamma_1} - \frac{\|\theta_t - \theta_*\|_2^2}{2\gamma_t} \\ \leqslant & \sum_{u=1}^{t} \frac{B^2 \gamma_u}{2} + \sum_{u=1}^{t-1} 4D^2 \left(\frac{1}{2\gamma_{u+1}} - \frac{1}{2\gamma_u} \right) + \frac{4D^2}{2\gamma_1} \\ &= & \sum_{u=1}^{t} \frac{B^2 \gamma_u}{2} + \frac{4D^2}{2\gamma_t} \leqslant 2DB\sqrt{t} \text{ with } \gamma_t = \frac{2D}{B\sqrt{t}} \end{split}$$

• Using convexity: $f\left(\frac{1}{t}\sum_{k=0}^{t-1}\theta_k\right) - f(\theta_*) \leqslant \frac{2DB}{\sqrt{t}}$

Subgradient descent for machine learning

- Assumptions (f is the expected risk, \hat{f} the empirical risk)
 - "Linear" predictors: $\theta(x) = \theta^{\top} \Phi(x)$, with $\|\Phi(x)\|_2 \leqslant R$ a.s.
 - $-\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \Phi(x_i)^{\top} \theta)$
 - G-Lipschitz loss: f and \hat{f} are GR-Lipschitz on $\mathcal{C} = \{\|\theta\|_2 \leqslant D\}$
- ullet Statistics: with probability greater than $1-\delta$

$$\sup_{\theta \in \mathcal{C}} |\hat{f}(\theta) - f(\theta)| \leqslant \frac{GRD}{\sqrt{n}} \left[2 + \sqrt{2 \log \frac{2}{\delta}} \right]$$

• Optimization: after t iterations of subgradient method

$$\hat{f}(\hat{\theta}) - \min_{\eta \in \mathcal{C}} \hat{f}(\eta) \leqslant \frac{GRD}{\sqrt{t}}$$

• t=n iterations, with total running-time complexity of $O(n^2d)$

Subgradient descent - strong convexity

Assumptions

- f convex and B-Lipschitz-continuous on $\{\|\theta\|_2 \leq D\}$
- $f \mu$ -strongly convex
- Algorithm: $\theta_t = \Pi_D \left(\theta_{t-1} \frac{2}{\mu(t+1)} f'(\theta_{t-1}) \right)$
- Bound:

$$f\left(\frac{2}{t(t+1)}\sum_{k=1}^{t}k\theta_{k-1}\right) - f(\theta_*) \leqslant \frac{2B^2}{\mu(t+1)}$$

- Three-line proof
- ullet Best possible convergence rate after O(d) iterations

Subgradient method - strong convexity - proof - I

- Iteration: $\theta_t = \Pi_D(\theta_{t-1} \gamma_t f'(\theta_{t-1}))$ with $\gamma_t = \frac{2}{\mu(t+1)}$
- Assumption: $||f'(\theta)||_2 \leqslant B$ and $||\theta||_2 \leqslant D$ and μ -strong convexity of f

$$\begin{split} \|\theta_{t} - \theta_{*}\|_{2}^{2} & \leqslant \|\theta_{t-1} - \theta_{*} - \gamma_{t} f'(\theta_{t-1})\|_{2}^{2} \text{ by contractivity of projections} \\ & \leqslant \|\theta_{t-1} - \theta_{*}\|_{2}^{2} + B^{2} \gamma_{t}^{2} - 2\gamma_{t} (\theta_{t-1} - \theta_{*})^{\top} f'(\theta_{t-1}) \text{ because } \|f'(\theta_{t-1})\|_{2} \leqslant B \\ & \leqslant \|\theta_{t-1} - \theta_{*}\|_{2}^{2} + B^{2} \gamma_{t}^{2} - 2\gamma_{t} \big[f(\theta_{t-1}) - f(\theta_{*}) + \frac{\mu}{2} \|\theta_{t-1} - \theta_{*}\|_{2}^{2} \big] \end{split}$$

(property of subgradients and strong convexity)

leading to

$$f(\theta_{t-1}) - f(\theta_*) \leq \frac{B^2 \gamma_t}{2} + \frac{1}{2} \left[\frac{1}{\gamma_t} - \mu \right] \|\theta_{t-1} - \theta_*\|_2^2 - \frac{1}{2\gamma_t} \|\theta_t - \theta_*\|_2^2$$

$$\leq \frac{B^2}{\mu(t+1)} + \frac{\mu}{2} \left[\frac{t-1}{2} \right] \|\theta_{t-1} - \theta_*\|_2^2 - \frac{\mu(t+1)}{4} \|\theta_t - \theta_*\|_2^2$$

Subgradient method - strong convexity - proof - II

 $\quad \text{From} \quad f(\theta_{t-1}) - f(\theta_*) \leqslant \frac{B^2}{\mu(t+1)} + \frac{\mu}{2} \big[\frac{t-1}{2} \big] \|\theta_{t-1} - \theta_*\|_2^2 - \frac{\mu(t+1)}{4} \|\theta_t - \theta_*\|_2^2$

$$\sum_{u=1}^{t} u \left[f(\theta_{u-1}) - f(\theta_*) \right] \leqslant \sum_{t=1}^{u} \frac{B^2 u}{\mu(u+1)} + \frac{1}{4} \sum_{u=1}^{t} \left[u(u-1) \|\theta_{u-1} - \theta_*\|_2^2 - u(u+1) \|\theta_u - \theta_*\|_2^2 \right]$$

$$\leqslant \frac{B^2 t}{\mu} + \frac{1}{4} \left[0 - t(t+1) \|\theta_t - \theta_*\|_2^2 \right] \leqslant \frac{B^2 t}{\mu}$$

• Using convexity: $f\left(\frac{2}{t(t+1)}\sum_{u=1}^{t}u\theta_{u-1}\right)-f(\theta_*)\leqslant \frac{2B^2}{t+1}$

(smooth) gradient descent

Assumptions

- -f convex with L-Lipschitz-continuous gradient
- Minimum attained at θ_*
- Algorithm:

$$\theta_t = \theta_{t-1} - \frac{1}{L}f'(\theta_{t-1})$$

• Bound:

$$f(\theta_t) - f(\theta_*) \leqslant \frac{2L\|\theta_0 - \theta_*\|^2}{t + 4}$$

- Three-line proof
- Not best possible convergence rate after O(d) iterations

(smooth) gradient descent - strong convexity

Assumptions

- -f convex with L-Lipschitz-continuous gradient
- $f \mu$ -strongly convex
- Algorithm:

$$\theta_t = \theta_{t-1} - \frac{1}{L}f'(\theta_{t-1})$$

Bound:

$$f(\theta_t) - f(\theta_*) \leqslant (1 - \mu/L)^t [f(\theta_0) - f(\theta_*)]$$

- Three-line proof
- Adaptivity of gradient descent to problem difficulty
- Line search

Accelerated gradient methods (Nesterov, 1983)

Assumptions

- f convex with L-Lipschitz-cont. gradient , min. attained at θ_*

• Algorithm:

$$\theta_t = \eta_{t-1} - \frac{1}{L} f'(\eta_{t-1})$$

$$\eta_t = \theta_t + \frac{t-1}{t+2} (\theta_t - \theta_{t-1})$$

Bound:

$$f(\theta_t) - f(\theta_*) \leqslant \frac{2L\|\theta_0 - \theta_*\|^2}{(t+1)^2}$$

- Ten-line proof (see, e.g., Schmidt, Le Roux, and Bach, 2011)
- Not improvable
- Extension to strongly convex functions

Optimization for sparsity-inducing norms (see Bach, Jenatton, Mairal, and Obozinski, 2011)

• Gradient descent as a **proximal method** (differentiable functions)

$$-\theta_{t+1} = \arg\min_{\theta \in \mathbb{R}^d} f(\theta_t) + (\theta - \theta_t)^{\top} \nabla f(\theta_t) + \frac{L}{2} \|\theta - \theta_t\|_2^2$$
$$-\theta_{t+1} = \theta_t - \frac{1}{L} \nabla f(\theta_t)$$

Optimization for sparsity-inducing norms (see Bach, Jenatton, Mairal, and Obozinski, 2011)

Gradient descent as a proximal method (differentiable functions)

$$-\theta_{t+1} = \arg\min_{\theta \in \mathbb{R}^d} f(\theta_t) + (\theta - \theta_t)^{\top} \nabla f(\theta_t) + \frac{L}{2} \|\theta - \theta_t\|_2^2$$
$$-\theta_{t+1} = \theta_t - \frac{1}{L} \nabla f(\theta_t)$$

$$ullet$$
 Problems of the form: $\min_{\theta \in \mathbb{R}^d} f(\theta) + \mu \Omega(\theta)$

$$-\theta_{t+1} = \arg\min_{\theta \in \mathbb{R}^d} f(\theta_t) + (\theta - \theta_t)^{\top} \nabla f(\theta_t) + \mu \Omega(\theta) + \frac{L}{2} \|\theta - \theta_t\|_2^2$$

- $-\Omega(\theta) = \|\theta\|_1 \Rightarrow$ Thresholded gradient descent
- Similar convergence rates than smooth optimization
 - Acceleration methods (Nesterov, 2007; Beck and Teboulle, 2009)

Summary: minimizing convex functions

- \bullet **Assumption**: f convex
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t f'(\theta_{t-1})$
 - $O(1/\sqrt{t})$ convergence rate for non-smooth convex functions
 - -O(1/t) convergence rate for smooth convex functions
 - $-O(e^{-\rho t})$ convergence rate for strongly smooth convex functions
- Newton method: $\theta_t = \theta_{t-1} f''(\theta_{t-1})^{-1} f'(\theta_{t-1})$
 - $-O(e^{-\rho 2^t})$ convergence rate

Summary: minimizing convex functions

- **Assumption**: f convex
- Gradient descent: $\theta_t = \theta_{t-1} \gamma_t f'(\theta_{t-1})$
 - $O(1/\sqrt{t})$ convergence rate for non-smooth convex functions
 - -O(1/t) convergence rate for smooth convex functions
 - $-O(e^{-\rho t})$ convergence rate for strongly smooth convex functions
- Newton method: $\theta_t = \theta_{t-1} f''(\theta_{t-1})^{-1} f'(\theta_{t-1})$
 - $-O(e^{-\rho 2^t})$ convergence rate
- Key insights from Bottou and Bousquet (2008)
 - 1. In machine learning, no need to optimize below statistical error
 - 2. In machine learning, cost functions are averages
 - **⇒ Stochastic approximation**

Outline

1. Large-scale machine learning and optimization

- Traditional statistical analysis
- Classical methods for convex optimization

2. Non-smooth stochastic approximation

- Stochastic (sub)gradient and averaging
- Non-asymptotic results and lower bounds
- Strongly convex vs. non-strongly convex

3. Smooth stochastic approximation algorithms

- Asymptotic and non-asymptotic results
- 4. Beyond decaying step-sizes
- 5. Finite data sets

Stochastic approximation

- ullet Goal: Minimizing a function f defined on \mathbb{R}^d
 - given only unbiased estimates $f_n'(\theta_n)$ of its gradients $f'(\theta_n)$ at certain points $\theta_n \in \mathbb{R}^d$

Stochastic approximation

- Goal: Minimizing a function f defined on \mathbb{R}^d
 - given only unbiased estimates $f'_n(\theta_n)$ of its gradients $f'(\theta_n)$ at certain points $\theta_n \in \mathbb{R}^d$
- Machine learning statistics
 - loss for a single pair of observations: $|f_n(\theta)| = \ell(y_n, \theta^\top \Phi(x_n))$

$$f_n(\theta) = \ell(y_n, \theta^{\top} \Phi(x_n))$$

- $-f(\theta) = \mathbb{E} f_n(\theta) = \mathbb{E} \ell(y_n, \theta^{\top} \Phi(x_n)) =$ generalization error
- Expected gradient: $f'(\theta) = \mathbb{E}f'_n(\theta) = \mathbb{E}\left\{\ell'(y_n, \theta^\top \Phi(x_n)) \Phi(x_n)\right\}$
- Non-asymptotic results
- Number of iterations = number of observations

Stochastic approximation

- ullet Goal: Minimizing a function f defined on \mathbb{R}^d
 - given only unbiased estimates $f_n'(\theta_n)$ of its gradients $f'(\theta_n)$ at certain points $\theta_n \in \mathbb{R}^d$

Stochastic approximation

- (much) broader applicability beyond convex optimization

$$\theta_n = \theta_{n-1} - \gamma_n h_n(\theta_{n-1})$$
 with $\mathbb{E}[h_n(\theta_{n-1})|\theta_{n-1}] = h(\theta_{n-1})$

- Beyond convex problems, i.i.d assumption, finite dimension, etc.
- Typically asymptotic results
- See, e.g., Kushner and Yin (2003); Borkar (2008); Benveniste et al.
 (2012)

Relationship to online learning

• Stochastic approximation

- Minimize $f(\theta) = \mathbb{E}_z \ell(\theta, z) =$ generalization error of θ
- Using the gradients of single i.i.d. observations

Relationship to online learning

• Stochastic approximation

- Minimize $f(\theta) = \mathbb{E}_z \ell(\theta, z) =$ generalization error of θ
- Using the gradients of single i.i.d. observations

Batch learning

- Finite set of observations: z_1, \ldots, z_n
- Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{k=1}^{n} \ell(\theta, z_i)$
- Estimator $\hat{\theta} = \text{Minimizer of } \hat{f}(\theta)$ over a certain class Θ
- Generalization bound using uniform concentration results

Relationship to online learning

• Stochastic approximation

- Minimize $f(\theta) = \mathbb{E}_z \ell(\theta, z) =$ generalization error of θ
- Using the gradients of single i.i.d. observations

Batch learning

- Finite set of observations: z_1, \ldots, z_n
- Empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{k=1}^{n} \ell(\theta, z_i)$
- Estimator $\hat{\theta}$ = Minimizer of $\hat{f}(\theta)$ over a certain class Θ
- Generalization bound using uniform concentration results

Online learning

- Update $\hat{\theta}_n$ after each new (potentially adversarial) observation z_n
- Cumulative loss: $\frac{1}{n} \sum_{k=1}^{n} \ell(\hat{\theta}_{k-1}, z_k)$
- Online to batch through averaging (Cesa-Bianchi et al., 2004)

Convex stochastic approximation

- Key properties of f and/or f_n
 - Smoothness: f B-Lipschitz continuous, f' L-Lipschitz continuous
 - Strong convexity: $f \mu$ -strongly convex

Convex stochastic approximation

- Key properties of f and/or f_n
 - Smoothness: f B-Lipschitz continuous, f' L-Lipschitz continuous
 - Strong convexity: $f \mu$ -strongly convex
- **Key algorithm:** Stochastic gradient descent (a.k.a. Robbins-Monro)

$$\theta_n = \theta_{n-1} - \gamma_n f'_n(\theta_{n-1})$$

- Polyak-Ruppert averaging: $\bar{\theta}_n = \frac{1}{n} \sum_{k=0}^{n-1} \theta_k$
- Which learning rate sequence γ_n ? Classical setting: $\gamma_n = Cn^{-\alpha}$

$$\gamma_n = C n^{-\alpha}$$

Convex stochastic approximation

- Key properties of f and/or f_n
 - Smoothness: f B-Lipschitz continuous, f' L-Lipschitz continuous
 - Strong convexity: $f \mu$ -strongly convex
- **Key algorithm:** Stochastic gradient descent (a.k.a. Robbins-Monro)

$$\theta_n = \theta_{n-1} - \gamma_n f'_n(\theta_{n-1})$$

- Polyak-Ruppert averaging: $\bar{\theta}_n = \frac{1}{n} \sum_{k=0}^{n-1} \theta_k$
- Which learning rate sequence γ_n ? Classical setting: $\gamma_n = Cn^{-\alpha}$

$$\gamma_n = C n^{-\alpha}$$

Desirable practical behavior

- Applicable (at least) to classical supervised learning problems
- Robustness to (potentially unknown) constants (L,B,μ)
- Adaptivity to difficulty of the problem (e.g., strong convexity)

Stochastic subgradient descent/method

Assumptions

- f_n convex and B-Lipschitz-continuous on $\{\|\theta\|_2 \leqslant D\}$
- (f_n) i.i.d. functions such that $\mathbb{E}f_n=f$
- θ_* global optimum of f on $\{\|\theta\|_2 \leq D\}$
- Algorithm: $\theta_n = \Pi_D \left(\theta_{n-1} \frac{2D}{B\sqrt{n}} f_n'(\theta_{n-1}) \right)$
- Bound:

$$\mathbb{E}f\left(\frac{1}{n}\sum_{k=0}^{n-1}\theta_k\right) - f(\theta_*) \leqslant \frac{2DB}{\sqrt{n}}$$

- "Same" three-line proof as in the deterministic case
- Minimax convergence rate
- Running-time complexity: O(dn) after n iterations

Stochastic subgradient method - proof - I

- Iteration: $\theta_n = \Pi_D(\theta_{n-1} \gamma_n f_n'(\theta_{n-1}))$ with $\gamma_n = \frac{2D}{B\sqrt{n}}$
- \mathcal{F}_n : information up to time n
- $||f'_n(\theta)||_2 \leqslant B$ and $||\theta||_2 \leqslant D$, unbiased gradients/functions $\mathbb{E}(f_n|\mathcal{F}_{n-1}) = f$

$$\|\theta_{n} - \theta_{*}\|_{2}^{2} \leq \|\theta_{n-1} - \theta_{*} - \gamma_{n} f'_{n}(\theta_{n-1})\|_{2}^{2} \text{ by contractivity of projections}$$

$$\leq \|\theta_{n-1} - \theta_{*}\|_{2}^{2} + B^{2} \gamma_{n}^{2} - 2\gamma_{n}(\theta_{n-1} - \theta_{*})^{\top} f'_{n}(\theta_{n-1}) \text{ because } \|f'_{n}(\theta_{n-1})\|_{2} \leq B$$

$$\mathbb{E} \big[\|\theta_{n} - \theta_{*}\|_{2}^{2} |\mathcal{F}_{n-1} \big] \leqslant \|\theta_{n-1} - \theta_{*}\|_{2}^{2} + B^{2} \gamma_{n}^{2} - 2 \gamma_{n} (\theta_{n-1} - \theta_{*})^{\top} f'(\theta_{n-1})$$

$$\leqslant \|\theta_{n-1} - \theta_{*}\|_{2}^{2} + B^{2} \gamma_{n}^{2} - 2 \gamma_{n} \big[f(\theta_{n-1}) - f(\theta_{*}) \big] \text{ (subgradient property)}$$

$$\mathbb{E} \|\theta_{n} - \theta_{*}\|_{2}^{2} \leqslant \mathbb{E} \|\theta_{n-1} - \theta_{*}\|_{2}^{2} + B^{2} \gamma_{n}^{2} - 2 \gamma_{n} \big[\mathbb{E} f(\theta_{n-1}) - f(\theta_{*}) \big]$$

$$\bullet \ \ \text{leading to} \ \mathbb{E}f(\theta_{n-1}) - f(\theta_*) \leqslant \frac{B^2 \gamma_n}{2} + \frac{1}{2\gamma_n} \big[\mathbb{E} \|\theta_{n-1} - \theta_*\|_2^2 - \mathbb{E} \|\theta_n - \theta_*\|_2^2 \big]$$

Stochastic subgradient method - proof - II

 $\bullet \ \ \text{Starting from} \ \mathbb{E}f(\theta_{n-1}) - f(\theta_*) \leqslant \frac{B^2 \gamma_n}{2} + \frac{1}{2\gamma_n} \big[\mathbb{E} \|\theta_{n-1} - \theta_*\|_2^2 - \mathbb{E} \|\theta_n - \theta_*\|_2^2 \big]$

$$\sum_{u=1}^{n} \left[\mathbb{E} f(\theta_{u-1}) - f(\theta_*) \right] \leqslant \sum_{u=1}^{n} \frac{B^2 \gamma_u}{2} + \sum_{u=1}^{n} \frac{1}{2 \gamma_u} \left[\mathbb{E} \|\theta_{u-1} - \theta_*\|_2^2 - \mathbb{E} \|\theta_u - \theta_*\|_2^2 \right]$$

$$\leqslant \sum_{u=1}^{n} \frac{B^2 \gamma_u}{2} + \frac{4D^2}{2 \gamma_n} \leqslant \frac{2DB}{\sqrt{n}} \text{ with } \gamma_n = \frac{2D}{B\sqrt{n}}$$

• Using convexity: $\mathbb{E} f \left(\frac{1}{n} \sum_{k=0}^{n-1} \theta_k \right) - f(\theta_*) \leqslant \frac{2DB}{\sqrt{n}}$

Stochastic subgradient descent - strong convexity - I

Assumptions

- f_n convex and B-Lipschitz-continuous
- (f_n) i.i.d. functions such that $\mathbb{E}f_n=f$
- $f \mu$ -strongly convex on $\{\|\theta\|_2 \leqslant D\}$
- $-\theta_*$ global optimum of f over $\{\|\theta\|_2 \leq D\}$

• Algorithm:
$$\theta_n = \Pi_D \left(\theta_{n-1} - \frac{2}{\mu(n+1)} f_n'(\theta_{n-1}) \right)$$

• Bound:

$$\mathbb{E}f\left(\frac{2}{n(n+1)}\sum_{k=1}^{n}k\theta_{k-1}\right) - f(\theta_*) \leqslant \frac{2B^2}{\mu(n+1)}$$

- "Same" three-line proof than in the deterministic case
- Minimax convergence rate

Stochastic subgradient descent - strong convexity - II

Assumptions

- f_n convex and B-Lipschitz-continuous
- (f_n) i.i.d. functions such that $\mathbb{E} f_n = f$
- θ_* global optimum of $g = f + \frac{\mu}{2} \| \cdot \|_2^2$
- No compactness assumption no projections

• Algorithm:

$$\theta_n = \theta_{n-1} - \frac{2}{\mu(n+1)} g'_n(\theta_{n-1}) = \theta_{n-1} - \frac{2}{\mu(n+1)} [f'_n(\theta_{n-1}) + \mu \theta_{n-1}]$$

• Bound:
$$\mathbb{E}g\left(\frac{2}{n(n+1)}\sum_{k=1}^{n}k\theta_{k-1}\right)-g(\theta_*)\leqslant \frac{2B^2}{\mu(n+1)}$$

Minimax convergence rate

Outline

1. Large-scale machine learning and optimization

- Traditional statistical analysis
- Classical methods for convex optimization

2. Non-smooth stochastic approximation

- Stochastic (sub)gradient and averaging
- Non-asymptotic results and lower bounds
- Strongly convex vs. non-strongly convex

3. Smooth stochastic approximation algorithms

- Asymptotic and non-asymptotic results
- 4. Beyond decaying step-sizes
- 5. Finite data sets

- Known global minimax rates of convergence for non-smooth problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)
 - Strongly convex: $O((\mu n)^{-1})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$
 - Non-strongly convex: $O(n^{-1/2})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$

- Known global minimax rates of convergence for non-smooth problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)
 - Strongly convex: $O((\mu n)^{-1})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$
 - Non-strongly convex: $O(n^{-1/2})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$
- Many contributions in optimization and online learning: Bottou and Le Cun (2005); Bottou and Bousquet (2008); Hazan et al. (2007); Shalev-Shwartz and Srebro (2008); Shalev-Shwartz et al. (2007, 2009); Xiao (2010); Duchi and Singer (2009); Nesterov and Vial (2008); Nemirovski et al. (2009)

- Known global minimax rates of convergence for non-smooth problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)
 - Strongly convex: $O((\mu n)^{-1})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$
 - Non-strongly convex: $O(n^{-1/2})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$
- Asymptotic analysis of averaging (Polyak and Juditsky, 1992; Ruppert, 1988)
 - All step sizes $\gamma_n=Cn^{-\alpha}$ with $\alpha\in(1/2,1)$ lead to $O(n^{-1})$ for smooth strongly convex problems

- Known global minimax rates of convergence for non-smooth problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)
 - Strongly convex: $O((\mu n)^{-1})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$
 - Non-strongly convex: $O(n^{-1/2})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$
- Asymptotic analysis of averaging (Polyak and Juditsky, 1992; Ruppert, 1988)
 - All step sizes $\gamma_n = C n^{-\alpha}$ with $\alpha \in (1/2,1)$ lead to $O(n^{-1})$ for smooth strongly convex problems
- Non-asymptotic analysis for smooth problems?

Smoothness/convexity assumptions

- Iteration: $\theta_n = \theta_{n-1} \gamma_n f'_n(\theta_{n-1})$
 - Polyak-Ruppert averaging: $\bar{\theta}_n = \frac{1}{n} \sum_{k=0}^{n-1} \theta_k$
- Smoothness of f_n : For each $n \ge 1$, the function f_n is a.s. convex, differentiable with L-Lipschitz-continuous gradient f'_n :
 - Smooth loss and bounded data
- **Strong convexity of** f: The function f is strongly convex with respect to the norm $\|\cdot\|$, with convexity constant $\mu > 0$:
 - Invertible population covariance matrix
 - or regularization by $\frac{\mu}{2} \|\theta\|^2$

Summary of new results (Bach and Moulines, 2011)

• Stochastic gradient descent with learning rate $\gamma_n = C n^{-\alpha}$

Strongly convex smooth objective functions

- Old: $O(n^{-1})$ rate achieved without averaging for $\alpha = 1$
- New: $O(n^{-1})$ rate achieved with averaging for $\alpha \in [1/2, 1]$
- Non-asymptotic analysis with explicit constants
- Forgetting of initial conditions
- Robustness to the choice of C

Summary of new results (Bach and Moulines, 2011)

- Stochastic gradient descent with learning rate $\gamma_n = C n^{-\alpha}$
- Strongly convex smooth objective functions
 - Old: $O(n^{-1})$ rate achieved without averaging for $\alpha = 1$
 - New: $O(n^{-1})$ rate achieved with averaging for $\alpha \in [1/2, 1]$
 - Non-asymptotic analysis with explicit constants
 - Forgetting of initial conditions
 - Robustness to the choice of C
- ullet Convergence rates for $\mathbb{E}\|\theta_n-\theta^*\|^2$ and $\mathbb{E}\|ar{\theta}_n-\theta^*\|^2$
 - no averaging: $O\left(\frac{\sigma^2 \gamma_n}{\mu}\right) + O(e^{-\mu n \gamma_n}) \|\theta_0 \theta^*\|^2$
 - $-\text{ averaging: } \frac{\operatorname{tr} H(\theta^*)^{-1}}{n} + \mu^{-1} O(n^{-2\alpha} + n^{-2+\alpha}) + O\Big(\frac{\|\theta_0 \theta^*\|^2}{\mu^2 n^2}\Big)$

Classical proof sketch (no averaging)

$$\begin{split} \|\theta_{n} - \theta_{*}\|_{2}^{2} &= \|\theta_{n-1} - \gamma_{n} f_{n}'(\theta_{n-1}) - \theta_{*}\|_{2}^{2} \\ &= \|\theta_{n-1} - \theta_{*}\|_{2}^{2} - 2\gamma_{n}(\theta_{n-1} - \theta_{*})^{\top} f_{n}'(\theta_{n-1}) + \gamma_{n}^{2} \|f_{n}'(\theta_{n-1})\|_{2}^{2} \\ &\leqslant \|\theta_{n-1} - \theta_{*}\|_{2}^{2} - 2\gamma_{n}(\theta_{n-1} - \theta_{*})^{\top} f_{n}'(\theta_{n-1}) \\ &+ 2\gamma_{n}^{2} \|f_{n}'(\theta_{*})\|_{2}^{2} + 2\gamma_{n}^{2} \|f_{n}'(\theta_{n-1}) - f_{n}'(\theta_{*})\|_{2}^{2} \\ &\leqslant \|\theta_{n-1} - \theta_{*}\|_{2}^{2} - 2\gamma_{n}(\theta_{n-1} - \theta_{*})^{\top} f_{n}'(\theta_{n-1}) \\ &+ 2\gamma_{n}^{2} \|f_{n}'(\theta_{*})\|_{2}^{2} + 2\gamma_{n}^{2} L [f_{n}'(\theta_{n-1}) - f_{n}'(\theta_{*})]^{\top} (\theta_{n-1} - \theta_{*}) \\ \mathbb{E}[\|\theta_{n} - \theta_{*}\|_{2}^{2} |\mathcal{F}_{n-1}] &\leqslant \|\theta_{n-1} - \theta_{*}\|_{2}^{2} - 2\gamma_{n}(\theta_{n-1} - \theta_{*})^{\top} f'(\theta_{n-1}) \\ &+ 2\gamma_{n}^{2} \mathbb{E}\|f_{n}'(\theta_{*})\|_{2}^{2} + 2\gamma_{n}^{2} L [f'(\theta_{n-1}) - 0]^{\top} (\theta_{n-1} - \theta_{*}) \\ &\leqslant \|\theta_{n-1} - \theta_{*}\|_{2}^{2} - 2\gamma_{n}(1 - \gamma_{n}L)(\theta_{n-1} - \theta_{*})^{\top} f'(\theta_{n-1}) + 2\gamma_{n}^{2} \sigma^{2} \\ &\leqslant \|\theta_{n-1} - \theta_{*}\|_{2}^{2} - 2\gamma_{n}(1 - \gamma_{n}L)\frac{1}{2}\mu \|\theta_{n-1} - \theta_{*}\|_{2}^{2} + 2\gamma_{n}^{2} \sigma^{2} \\ &\leqslant \|\theta_{n-1} - \theta_{*}\|_{2}^{2} - 2\gamma_{n}(1 - \gamma_{n}L)\frac{1}{2}\mu \|\theta_{n-1} - \theta_{*}\|_{2}^{2} + 2\gamma_{n}^{2} \sigma^{2} \\ &= [1 - \mu\gamma_{n}(1 - \gamma_{n}L)] \|\theta_{n-1} - \theta_{*}\|_{2}^{2} + 2\gamma_{n}^{2} \sigma^{2} \\ &\mathbb{E}[\|\theta_{n-1} - \theta_{*}\|_{2}^{2}] \leqslant [1 - \mu\gamma_{n}(1 - \gamma_{n}L)] \mathbb{E}[\|\theta_{n-1} - \theta_{*}\|_{2}^{2}] + 2\gamma_{n}^{2} \sigma^{2} \end{split}$$

Proof sketch (averaging)

• From Polyak and Juditsky (1992):

$$\theta_{n} = \theta_{n-1} - \gamma_{n} f'_{n}(\theta_{n-1})$$

$$\Leftrightarrow f'_{n}(\theta_{n-1}) = \frac{1}{\gamma_{n}}(\theta_{n-1} - \theta_{n})$$

$$\Leftrightarrow f'_{n}(\theta_{*}) + f''_{n}(\theta_{*})(\theta_{n-1} - \theta_{*}) = \frac{1}{\gamma_{n}}(\theta_{n-1} - \theta_{n}) + O(\|\theta_{n-1} - \theta_{*}\|^{2})$$

$$\Leftrightarrow f'_{n}(\theta_{*}) + f''(\theta_{*})(\theta_{n-1} - \theta_{*}) = \frac{1}{\gamma_{n}}(\theta_{n-1} - \theta_{n}) + O(\|\theta_{n-1} - \theta_{*}\|^{2})$$

$$+O(\|\theta_{n-1} - \theta_{*}\|)\varepsilon_{n}$$

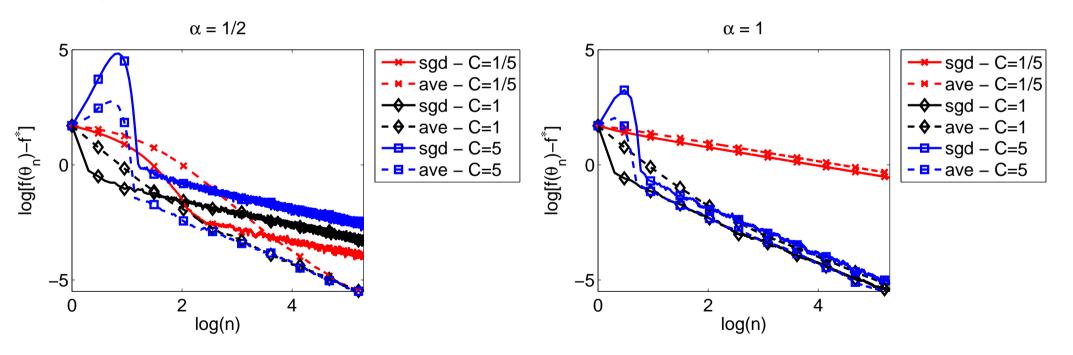
$$\Leftrightarrow \theta_{n-1} - \theta_{*} = -f''(\theta_{*})^{-1}f'_{n}(\theta_{*}) + \frac{1}{\gamma_{n}}f''(\theta_{*})^{-1}(\theta_{n-1} - \theta_{n})$$

$$+O(\|\theta_{n-1} - \theta_{*}\|^{2}) + O(\|\theta_{n-1} - \theta_{*}\|)\varepsilon_{n}$$

• Averaging to cancel the term $\frac{1}{\gamma_n}f''(\theta_*)^{-1}(\theta_{n-1}-\theta_n)$

Robustness to wrong constants for $\gamma_n = C n^{-\alpha}$

- $f(\theta) = \frac{1}{2} |\theta|^2$ with i.i.d. Gaussian noise (d=1)
- Left: $\alpha = 1/2$
- Right: $\alpha = 1$



• See also http://leon.bottou.org/projects/sgd

Summary of new results (Bach and Moulines, 2011)

- Stochastic gradient descent with learning rate $\gamma_n = C n^{-\alpha}$
- Strongly convex smooth objective functions
 - Old: $O(n^{-1})$ rate achieved without averaging for $\alpha = 1$
 - New: $O(n^{-1})$ rate achieved with averaging for $\alpha \in [1/2, 1]$
 - Non-asymptotic analysis with explicit constants

Summary of new results (Bach and Moulines, 2011)

• Stochastic gradient descent with learning rate $\gamma_n = C n^{-\alpha}$

Strongly convex smooth objective functions

- Old: $O(n^{-1})$ rate achieved without averaging for $\alpha = 1$
- New: $O(n^{-1})$ rate achieved with averaging for $\alpha \in [1/2, 1]$
- Non-asymptotic analysis with explicit constants

Non-strongly convex smooth objective functions

- Old: $O(n^{-1/2})$ rate achieved with averaging for $\alpha = 1/2$
- New: $O(\max\{n^{1/2-3\alpha/2},n^{-\alpha/2},n^{\alpha-1}\})$ rate achieved without averaging for $\alpha\in[1/3,1]$

• Take-home message

- Use $\alpha = 1/2$ with averaging to be adaptive to strong convexity

Beyond stochastic gradient method

Adding a proximal step

- Goal: $\min_{\theta \in \mathbb{R}^d} f(\theta) + \Omega(\theta) = \mathbb{E} f_n(\theta) + \Omega(\theta)$
- Replace recursion $\theta_n = \theta_{n-1} \gamma_n f_n'(\theta_n)$ by

$$\theta_n = \min_{\theta \in \mathbb{R}^d} \left\| \theta - \theta_{n-1} + \gamma_n f'_n(\theta_n) \right\|_2^2 + C\Omega(\theta)$$

- Xiao (2010); Hu et al. (2009)
- May be accelerated (Ghadimi and Lan, 2013)

Related frameworks

- Regularized dual averaging (Nesterov, 2009; Xiao, 2010)
- Mirror descent (Nemirovski et al., 2009; Lan et al., 2012)

Outline

1. Large-scale machine learning and optimization

- Traditional statistical analysis
- Classical methods for convex optimization

2. Non-smooth stochastic approximation

- Stochastic (sub)gradient and averaging
- Non-asymptotic results and lower bounds
- Strongly convex vs. non-strongly convex

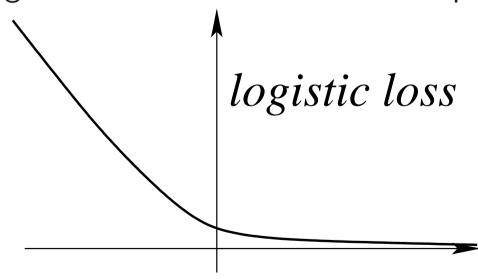
3. Smooth stochastic approximation algorithms

- Asymptotic and non-asymptotic results
- 4. Beyond decaying step-sizes
- 5. Finite data sets

- Known global minimax rates of convergence for non-smooth problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)
 - Strongly convex: $O((\mu n)^{-1})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto (\mu n)^{-1}$
 - Non-strongly convex: $O(n^{-1/2})$ Attained by averaged stochastic gradient descent with $\gamma_n \propto n^{-1/2}$
- Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
 Ruppert, 1988)
 - All step sizes $\gamma_n = C n^{-\alpha}$ with $\alpha \in (1/2,1)$ lead to $O(n^{-1})$ for smooth strongly convex problems
- A single adaptive algorithm for smooth problems with convergence rate $O(\min\{1/\mu n, 1/\sqrt{n}\})$ in all situations?

- Logistic regression: $(\Phi(x_n), y_n) \in \mathbb{R}^d \times \{-1, 1\}$
 - Single data point: $f_n(\theta) = \log(1 + \exp(-y_n \theta^{\top} \Phi(x_n)))$
 - Generalization error: $f(\theta) = \mathbb{E}f_n(\theta)$

- Logistic regression: $(\Phi(x_n), y_n) \in \mathbb{R}^d \times \{-1, 1\}$
 - Single data point: $f_n(\theta) = \log(1 + \exp(-y_n \theta^{\top} \Phi(x_n)))$
 - Generalization error: $f(\theta) = \mathbb{E}f_n(\theta)$
- Cannot be strongly convex ⇒ local strong convexity
 - unless restricted to $|\theta^{\top}\Phi(x_n)| \leq M$ (and with constants e^M)
 - $-\mu$ = lowest eigenvalue of the Hessian at the optimum $f''(\theta_*)$



- Logistic regression: $(\Phi(x_n), y_n) \in \mathbb{R}^d \times \{-1, 1\}$
 - Single data point: $f_n(\theta) = \log(1 + \exp(-y_n \theta^{\top} \Phi(x_n)))$
 - Generalization error: $f(\theta) = \mathbb{E}f_n(\theta)$
- Cannot be strongly convex ⇒ local strong convexity
 - unless restricted to $|\theta^{\top}\Phi(x_n)| \leq M$ (and with constants e^M)
 - $-\mu =$ lowest eigenvalue of the Hessian at the optimum $f''(\theta_*)$
- n steps of averaged SGD with constant step-size $1/(2R^2\sqrt{n})$
 - with R = radius of data (Bach, 2013):

$$\mathbb{E}f(\bar{\theta}_n) - f(\theta_*) \leqslant \min\left\{\frac{1}{\sqrt{n}}, \frac{R^2}{n\mu}\right\} \left(15 + 5R\|\theta_0 - \theta_*\|\right)^4$$

Proof based on self-concordance (Nesterov and Nemirovski, 1994)

Self-concordance

- Usual definition for convex $\varphi : \mathbb{R} \to \mathbb{R}$: $|\varphi'''(t)| \leq 2\varphi''(t)^{3/2}$
 - Affine invariant
 - Extendable to all convex functions on \mathbb{R}^d by looking at rays
 - Used for the sharp proof of quadratic convergence of Newton method (Nesterov and Nemirovski, 1994)
- Generalized notion: $|\varphi'''(t)| \leq \varphi''(t)$
 - Applicable to logistic regression (with extensions)

Self-concordance

- Usual definition for convex $\varphi : \mathbb{R} \to \mathbb{R}$: $|\varphi'''(t)| \leq 2\varphi''(t)^{3/2}$
 - Affine invariant
 - Extendable to all convex functions on \mathbb{R}^d by looking at rays
 - Used for the sharp proof of quadratic convergence of Newton method (Nesterov and Nemirovski, 1994)
- Generalized notion: $|\varphi'''(t)| \leq \varphi''(t)$
 - Applicable to logistic regression (with extensions)

• Important properties

- Allows global Taylor expansions
- Relates expansions of derivatives of different orders

Adaptive algorithm for logistic regression Proof sketch

- Step 1: use existing result $f(\bar{\theta}_n) f(\theta_*) + \frac{R^2}{\sqrt{n}} \|\theta_0 \theta_*\|_2^2 = O(1/\sqrt{n})$
- Step 2: $f'_n(\theta_{n-1}) = \frac{1}{\gamma}(\theta_{n-1} \theta_n) \Rightarrow \frac{1}{n} \sum_{k=1}^n f'_k(\theta_{k-1}) = \frac{1}{n\gamma}(\theta_0 \theta_n)$
- Step 3: $\left\| f'\left(\frac{1}{n}\sum_{k=1}^n \theta_{k-1}\right) \frac{1}{n}\sum_{k=1}^n f'(\theta_{k-1}) \right\|_2$ = $O\left(f(\bar{\theta}_n) - f(\theta_*)\right) = O(1/\sqrt{n})$ using self-concordance
- Step 4a: if f μ -strongly convex, $f(\bar{\theta}_n) f(\theta_*) \leqslant \frac{1}{2\mu} \|f'(\bar{\theta}_n)\|_2^2$
- Step 4b: if f self-concordant, "locally true" with $\mu = \lambda_{\min}(f''(\theta_*))$

- Logistic regression: $(\Phi(x_n), y_n) \in \mathbb{R}^d \times \{-1, 1\}$
 - Single data point: $f_n(\theta) = \log(1 + \exp(-y_n \theta^{\top} \Phi(x_n)))$
 - Generalization error: $f(\theta) = \mathbb{E}f_n(\theta)$
- Cannot be strongly convex ⇒ local strong convexity
 - unless restricted to $|\theta^{\top}\Phi(x_n)| \leq M$ (and with constants e^M)
 - $-\mu =$ lowest eigenvalue of the Hessian at the optimum $f''(\theta_*)$
- n steps of averaged SGD with constant step-size $1/(2R^2\sqrt{n})$
 - with R = radius of data (Bach, 2013):

$$\mathbb{E}f(\bar{\theta}_n) - f(\theta_*) \leqslant \min\left\{\frac{1}{\sqrt{n}}, \frac{R^2}{n\mu}\right\} \left(15 + 5R\|\theta_0 - \theta_*\|\right)^4$$

Proof based on self-concordance (Nesterov and Nemirovski, 1994)

- Logistic regression: $(\Phi(x_n), y_n) \in \mathbb{R}^d \times \{-1, 1\}$
 - Single data point: $f_n(\theta) = \log(1 + \exp(-y_n \theta^{\top} \Phi(x_n)))$
 - Generalization error: $f(\theta) = \mathbb{E} f_n(\theta)$
- Cannot be strongly convex ⇒ local strong convexity
 - unless restricted to $|\theta^{\top}\Phi(x_n)| \leq M$ (and with constants e^M)
 - μ = lowest eigenvalue of the Hessian at the optimum $f''(\theta_*)$
- n steps of averaged SGD with constant step-size $1/(2R^2\sqrt{n})$
 - with R = radius of data (Bach, 2013):

$$\mathbb{E}f(\bar{\theta}_n) - f(\theta_*) \leqslant \min\left\{\frac{1}{\sqrt{n}}, \frac{R^2}{n\mu}\right\} \left(15 + 5R\|\theta_0 - \theta_*\|\right)^4$$

– A single adaptive algorithm for smooth problems with convergence rate O(1/n) in all situations?

Least-mean-square algorithm

- Least-squares: $f(\theta) = \frac{1}{2}\mathbb{E}\big[(y_n \langle \Phi(x_n), \theta \rangle)^2\big]$ with $\theta \in \mathbb{R}^d$
 - SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
 - usually studied without averaging and decreasing step-sizes
 - with strong convexity assumption $\mathbb{E}\big[\Phi(x_n)\otimes\Phi(x_n)\big]=H\succcurlyeq\mu\cdot\mathrm{Id}$

Least-mean-square algorithm

- Least-squares: $f(\theta) = \frac{1}{2}\mathbb{E}\big[(y_n \langle \Phi(x_n), \theta \rangle)^2\big]$ with $\theta \in \mathbb{R}^d$
 - SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
 - usually studied without averaging and decreasing step-sizes
 - with strong convexity assumption $\mathbb{E}\big[\Phi(x_n)\otimes\Phi(x_n)\big]=H\succcurlyeq\mu\cdot\mathrm{Id}$
- New analysis for averaging and constant step-size $\gamma = 1/(4R^2)$
 - Assume $\|\Phi(x_n)\| \leqslant R$ and $|y_n \langle \Phi(x_n), \theta_* \rangle| \leqslant \sigma$ almost surely
 - No assumption regarding lowest eigenvalues of H
 - Main result: $\left|\mathbb{E}f(\bar{\theta}_{n-1}) f(\theta_*) \leqslant \frac{4\sigma^2 d}{n} + \frac{4R^2\|\theta_0 \theta_*\|^2}{n}\right|$
- Matches statistical lower bound (Tsybakov, 2003)
 - Non-asymptotic robust version of Györfi and Walk (1996)

Least-squares - Proof technique

• LMS recursion:

$$\theta_n - \theta_* = [I - \gamma \Phi(x_n) \otimes \Phi(x_n)](\theta_{n-1} - \theta_*) + \gamma \varepsilon_n \Phi(x_n)$$

• Simplified LMS recursion: with $H = \mathbb{E} \big[\Phi(x_n) \otimes \Phi(x_n) \big]$

$$\theta_n - \theta_* = [I - \gamma \mathbf{H}](\theta_{n-1} - \theta_*) + \gamma \varepsilon_n \Phi(x_n)$$

- Direct proof technique of Polyak and Juditsky (1992), e.g.,

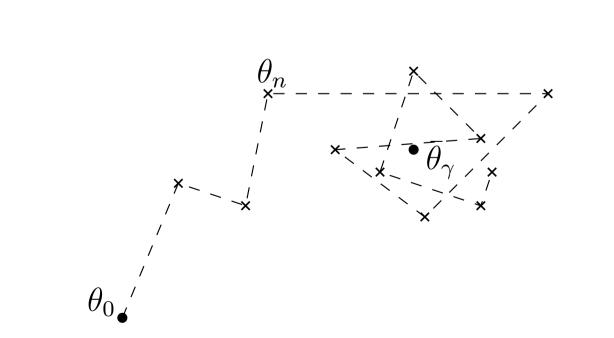
$$\theta_n - \theta_* = \left[I - \gamma \mathbf{H}\right]^n (\theta_0 - \theta_*) + \gamma \sum_{k=1}^n \left[I - \gamma \mathbf{H}\right]^{n-k} \varepsilon_k \Phi(x_k)$$

 \bullet Infinite expansion of Aguech, Moulines, and Priouret (2000) in powers of γ

• LMS recursion for $f_n(\theta) = \frac{1}{2} (y_n - \langle \Phi(x_n), \theta \rangle)^2$

$$\theta_n = \theta_{n-1} - \gamma (\langle \Phi(x_n), \theta_{n-1} \rangle - y_n) \Phi(x_n)$$

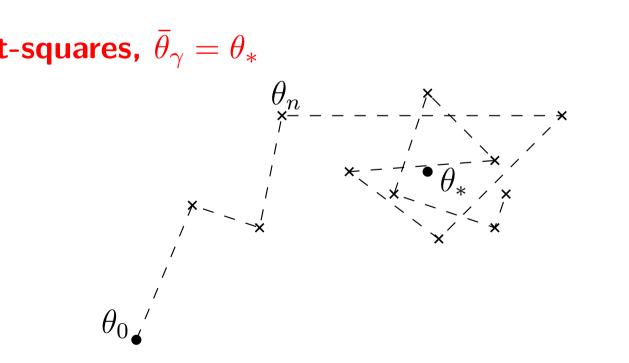
- The sequence $(\theta_n)_n$ is a homogeneous Markov chain
 - convergence to a stationary distribution π_{γ}
 - with expectation $\bar{\theta}_{\gamma} \stackrel{\text{def}}{=} \int \theta \pi_{\gamma}(\mathrm{d}\theta)$



• LMS recursion for $f_n(\theta) = \frac{1}{2}(y_n - \langle \Phi(x_n), \theta \rangle)^2$

$$\theta_n = \theta_{n-1} - \gamma (\langle \Phi(x_n), \theta_{n-1} \rangle - y_n) \Phi(x_n)$$

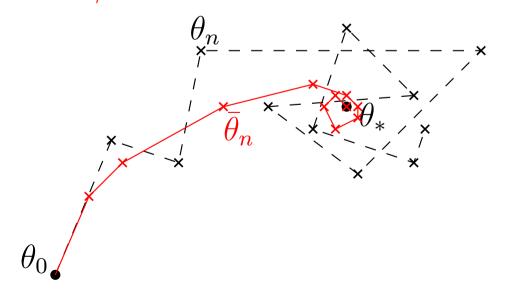
- The sequence $(\theta_n)_n$ is a homogeneous Markov chain
 - convergence to a stationary distribution π_{γ}
 - with expectation $\bar{\theta}_{\gamma} \stackrel{\mathrm{def}}{=} \int \theta \pi_{\gamma}(\mathrm{d}\theta)$
- ullet For least-squares, $ar{ heta}_{\gamma}= heta_*$



• LMS recursion for $f_n(\theta) = \frac{1}{2} (y_n - \langle \Phi(x_n), \theta \rangle)^2$

$$\theta_n = \theta_{n-1} - \gamma (\langle \Phi(x_n), \theta_{n-1} \rangle - y_n) \Phi(x_n)$$

- The sequence $(\theta_n)_n$ is a homogeneous Markov chain
 - convergence to a stationary distribution π_{γ}
 - with expectation $\bar{\theta}_{\gamma} \stackrel{\mathrm{def}}{=} \int \theta \pi_{\gamma}(\mathrm{d}\theta)$
- ullet For least-squares, $ar{ heta}_{\gamma}= heta_*$



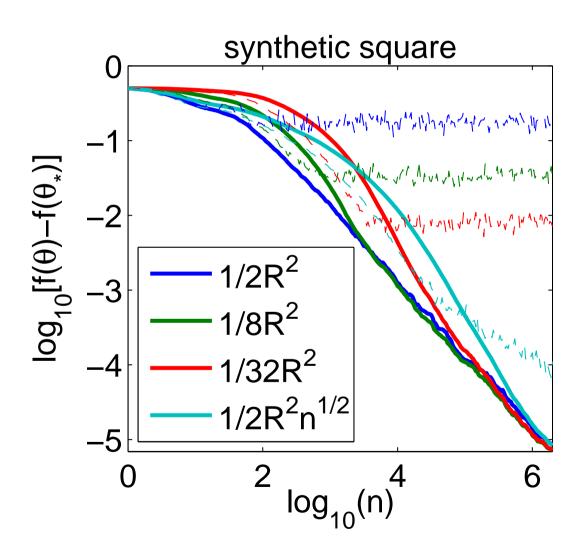
• LMS recursion for $f_n(\theta) = \frac{1}{2} (y_n - \langle \Phi(x_n), \theta \rangle)^2$

$$\theta_n = \theta_{n-1} - \gamma (\langle \Phi(x_n), \theta_{n-1} \rangle - y_n) \Phi(x_n)$$

- The sequence $(\theta_n)_n$ is a homogeneous Markov chain
 - convergence to a stationary distribution π_{γ}
 - with expectation $\bar{\theta}_{\gamma} \stackrel{\mathrm{def}}{=} \int \theta \pi_{\gamma}(\mathrm{d}\theta)$
- ullet For least-squares, $ar{ heta}_{\gamma}= heta_*$
 - θ_n does not converge to θ_* but oscillates around it
 - oscillations of order $\sqrt{\gamma}$
- Ergodic theorem:
 - Averaged iterates converge to $\bar{ heta}_{\gamma}= heta_*$ at rate O(1/n)

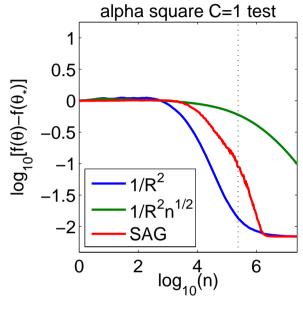
Simulations - synthetic examples

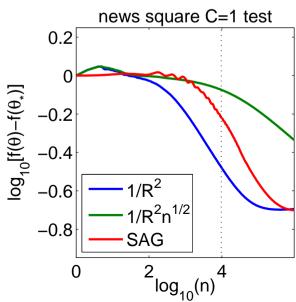
ullet Gaussian distributions - p=20

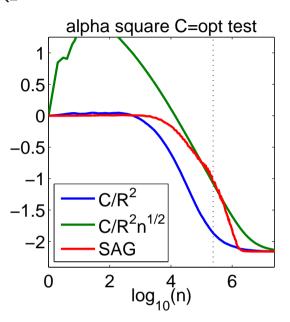


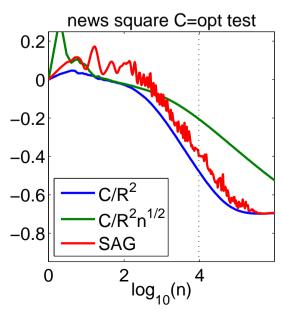
Simulations - benchmarks

• alpha (p = 500, n = 500 000), news (p = 1 300 000, n = 20 000)







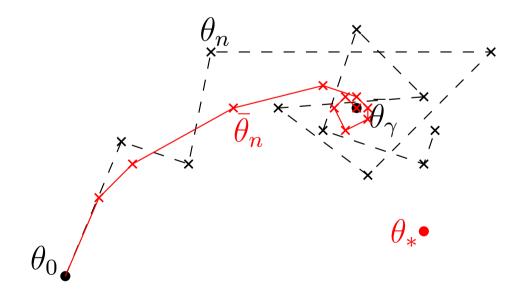


Beyond least-squares - Markov chain interpretation

- Recursion $\theta_n = \theta_{n-1} \gamma f_n'(\theta_{n-1})$ also defines a Markov chain
 - Stationary distribution π_{γ} such that $\int f'(\theta)\pi_{\gamma}(\mathrm{d}\theta)=0$
 - When f' is not linear, $f'(\int \theta \pi_{\gamma}(d\theta)) \neq \int f'(\theta) \pi_{\gamma}(d\theta) = 0$

Beyond least-squares - Markov chain interpretation

- Recursion $\theta_n = \theta_{n-1} \gamma f_n'(\theta_{n-1})$ also defines a Markov chain
 - Stationary distribution π_{γ} such that $\int f'(\theta)\pi_{\gamma}(d\theta)=0$
 - When f' is not linear, $f'(\int \theta \pi_{\gamma}(d\theta)) \neq \int f'(\theta) \pi_{\gamma}(d\theta) = 0$
- θ_n oscillates around the wrong value $\bar{\theta}_{\gamma} \neq \theta_*$



Beyond least-squares - Markov chain interpretation

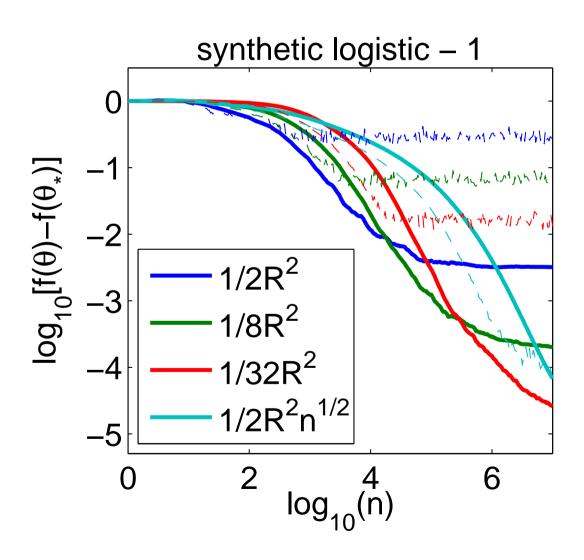
- Recursion $\theta_n = \theta_{n-1} \gamma f_n'(\theta_{n-1})$ also defines a Markov chain
 - Stationary distribution π_{γ} such that $\int f'(\theta)\pi_{\gamma}(d\theta)=0$
 - When f' is not linear, $f'(\int \theta \pi_{\gamma}(d\theta)) \neq \int f'(\theta) \pi_{\gamma}(d\theta) = 0$
- ullet θ_n oscillates around the wrong value $ar{ heta}_\gamma
 eq heta_*$
 - moreover, $\|\theta_* \theta_n\| = O_p(\sqrt{\gamma})$

• Ergodic theorem

- averaged iterates converge to $\bar{\theta}_{\gamma} \neq \theta_{*}$ at rate O(1/n)
- moreover, $\|\theta_* \bar{\theta}_{\gamma}\| = O(\gamma)$ (Bach, 2013)

Simulations - synthetic examples

• Gaussian distributions - p=20



Known facts

- 1. Averaged SGD with $\gamma_n \propto n^{-1/2}$ leads to *robust* rate $O(n^{-1/2})$ for all convex functions
- 2. Averaged SGD with γ_n constant leads to *robust* rate $O(n^{-1})$ for all convex *quadratic* functions
- 3. Newton's method squares the error at each iteration for smooth functions
- 4. A single step of Newton's method is equivalent to minimizing the quadratic Taylor expansion

Known facts

- 1. Averaged SGD with $\gamma_n \propto n^{-1/2}$ leads to *robust* rate $O(n^{-1/2})$ for all convex functions
- 2. Averaged SGD with γ_n constant leads to robust rate $O(n^{-1})$ for all convex quadratic functions $\Rightarrow O(n^{-1})$
- 3. Newton's method squares the error at each iteration for smooth functions $\Rightarrow O((n^{-1/2})^2)$
- 4. A single step of Newton's method is equivalent to minimizing the quadratic Taylor expansion

Online Newton step

- Rate: $O((n^{-1/2})^2 + n^{-1}) = O(n^{-1})$
- Complexity: O(p) per iteration

• The Newton step for $f = \mathbb{E} f_n(\theta) \stackrel{\text{def}}{=} \mathbb{E} \big[\ell(y_n, \langle \theta, \Phi(x_n) \rangle) \big]$ at $\tilde{\theta}$ is equivalent to minimizing the quadratic approximation

$$g(\theta) = f(\tilde{\theta}) + \langle f'(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, f''(\tilde{\theta})(\theta - \tilde{\theta}) \rangle$$

$$= f(\tilde{\theta}) + \langle \mathbb{E}f'_n(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, \mathbb{E}f''_n(\tilde{\theta})(\theta - \tilde{\theta}) \rangle$$

$$= \mathbb{E}\Big[f(\tilde{\theta}) + \langle f'_n(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, f''_n(\tilde{\theta})(\theta - \tilde{\theta}) \rangle\Big]$$

• The Newton step for $f = \mathbb{E} f_n(\theta) \stackrel{\text{def}}{=} \mathbb{E} \big[\ell(y_n, \langle \theta, \Phi(x_n) \rangle) \big]$ at $\tilde{\theta}$ is equivalent to minimizing the quadratic approximation

$$g(\theta) = f(\tilde{\theta}) + \langle f'(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, f''(\tilde{\theta})(\theta - \tilde{\theta}) \rangle$$

$$= f(\tilde{\theta}) + \langle \mathbb{E}f'_n(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, \mathbb{E}f''_n(\tilde{\theta})(\theta - \tilde{\theta}) \rangle$$

$$= \mathbb{E}\Big[f(\tilde{\theta}) + \langle f'_n(\tilde{\theta}), \theta - \tilde{\theta} \rangle + \frac{1}{2} \langle \theta - \tilde{\theta}, f''_n(\tilde{\theta})(\theta - \tilde{\theta}) \rangle\Big]$$

• Complexity of least-mean-square recursion for g is O(p)

$$\theta_n = \theta_{n-1} - \gamma \left[f'_n(\tilde{\theta}) + f''_n(\tilde{\theta})(\theta_{n-1} - \tilde{\theta}) \right]$$

- $-f_n''(\tilde{\theta}) = \ell''(y_n, \langle \tilde{\theta}, \Phi(x_n) \rangle) \Phi(x_n) \otimes \Phi(x_n)$ has rank one
- New online Newton step without computing/inverting Hessians

Choice of support point for online Newton step

Two-stage procedure

- (1) Run n/2 iterations of averaged SGD to obtain $\tilde{\theta}$
- (2) Run n/2 iterations of averaged constant step-size LMS
 - Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
 - Provable convergence rate of O(p/n) for logistic regression
 - Additional assumptions but no strong convexity

Logistic regression - Proof technique

• Using generalized self-concordance of $\varphi: u \mapsto \log(1 + e^{-u})$:

$$|\varphi'''(u)| \leqslant \varphi''(u)$$

- NB: difference with regular self-concordance: $|\varphi'''(u)| \leq 2\varphi''(u)^{3/2}$
- Using novel high-probability convergence results for regular averaged stochastic gradient descent
- Requires assumption on the kurtosis in every direction, i.e.,

$$\mathbb{E}\langle \Phi(x_n), \eta \rangle^4 \leqslant \kappa \left[\mathbb{E}\langle \Phi(x_n), \eta \rangle^2 \right]^2$$

Choice of support point for online Newton step

Two-stage procedure

- (1) Run n/2 iterations of averaged SGD to obtain $\tilde{\theta}$
- (2) Run n/2 iterations of averaged constant step-size LMS
 - Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
 - Provable convergence rate of O(p/n) for logistic regression
 - Additional assumptions but no strong convexity

• Update at each iteration using the current averaged iterate

- Recursion:
$$\theta_n = \theta_{n-1} - \gamma \left[f_n'(\bar{\theta}_{n-1}) + f_n''(\bar{\theta}_{n-1})(\theta_{n-1} - \bar{\theta}_{n-1}) \right]$$

- No provable convergence rate (yet) but best practical behavior
- Note (dis)similarity with regular SGD: $\theta_n = \theta_{n-1} \gamma f'_n(\theta_{n-1})$

Online Newton algorithm Current proof (Flammarion et al., 2014)

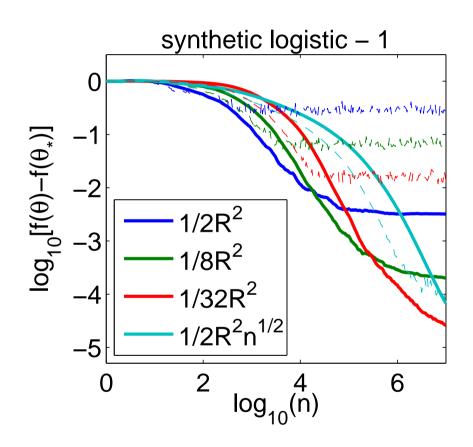
Recursion

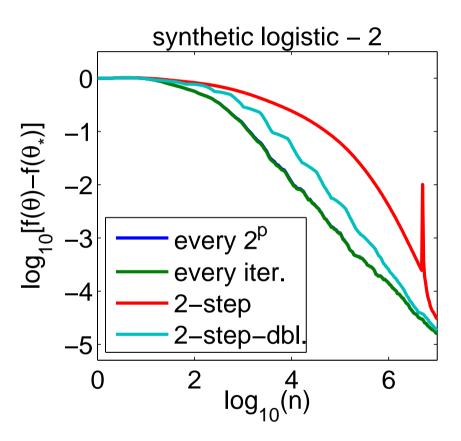
$$\begin{cases} \theta_n &= \theta_{n-1} - \gamma \left[f'_n(\bar{\theta}_{n-1}) + f''_n(\bar{\theta}_{n-1})(\theta_{n-1} - \bar{\theta}_{n-1}) \right] \\ \bar{\theta}_n &= \bar{\theta}_{n-1} + \frac{1}{n}(\theta_n - \bar{\theta}_{n-1}) \end{cases}$$

- Instance of two-time-scale stochastic approximation (Borkar, 1997)
 - Given $\bar{\theta}$, $\theta_n = \theta_{n-1} \gamma [f_n'(\bar{\theta}) + f_n''(\bar{\theta})(\theta_{n-1} \bar{\theta})]$ defines a homogeneous Markov chain (fast dynamics)
 - $-\bar{\theta}_n$ is updated at rate 1/n (slow dynamics)
- Difficulty: preserving robustness to ill-conditioning

Simulations - synthetic examples

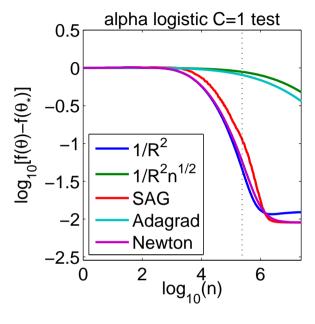
ullet Gaussian distributions - p=20

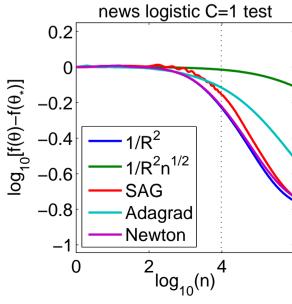


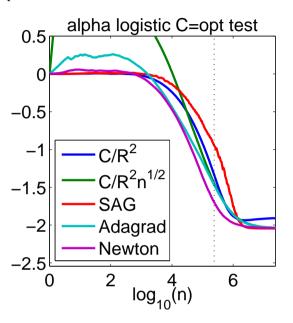


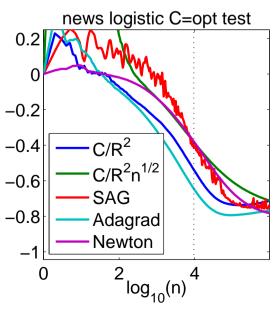
Simulations - benchmarks

• alpha (p = 500, n = 500 000), news (p = 1 300 000, n = 20 000)









Outline

1. Large-scale machine learning and optimization

- Traditional statistical analysis
- Classical methods for convex optimization

2. Non-smooth stochastic approximation

- Stochastic (sub)gradient and averaging
- Non-asymptotic results and lower bounds
- Strongly convex vs. non-strongly convex

3. Smooth stochastic approximation algorithms

- Asymptotic and non-asymptotic results
- 4. Beyond decaying step-sizes
- 5. Finite data sets

Going beyond a single pass over the data

• Stochastic approximation

- Assumes infinite data stream
- Observations are used only once
- Directly minimizes testing cost $\mathbb{E}_{(x,y)} \, \ell(y, \theta^\top \Phi(x))$

Going beyond a single pass over the data

• Stochastic approximation

- Assumes infinite data stream
- Observations are used only once
- Directly minimizes testing cost $\mathbb{E}_{(x,y)} \ell(y, \theta^{\top} \Phi(x))$

Machine learning practice

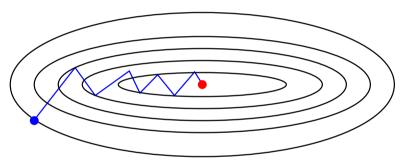
- Finite data set $(x_1, y_1, \ldots, x_n, y_n)$
- Multiple passes
- Minimizes training cost $\frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \theta^{\top} \Phi(x_i))$
- Need to regularize (e.g., by the ℓ_2 -norm) to avoid overfitting

• Goal: minimize
$$g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$

- Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$ with $f_i(\theta) = \ell \left(y_i, \theta^\top \Phi(x_i) \right) + \mu \Omega(\theta)$
- Batch gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1}) = \theta_{t-1} \frac{\gamma_t}{n} \sum_{i=1}^n f_i'(\theta_{t-1})$
 - Linear (e.g., exponential) convergence rate in $O(e^{-\alpha t})$
 - Iteration complexity is linear in n (with line search)

• Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$ with $f_i(\theta) = \ell \left(y_i, \theta^\top \Phi(x_i) \right) + \mu \Omega(\theta)$

• Batch gradient descent: $\theta_t = \theta_{t-1} - \gamma_t g'(\theta_{t-1}) = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n f_i'(\theta_{t-1})$

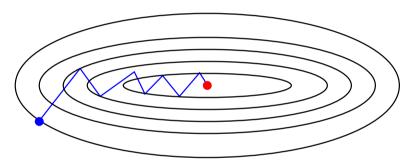


- Minimizing $g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$ with $f_i(\theta) = \ell(y_i, \theta^{\top} \Phi(x_i)) + \mu \Omega(\theta)$
- Batch gradient descent: $\theta_t = \theta_{t-1} \gamma_t g'(\theta_{t-1}) = \theta_{t-1} \frac{\gamma_t}{n} \sum_{i=1}^n f_i'(\theta_{t-1})$
 - Linear (e.g., exponential) convergence rate in $O(e^{-\alpha t})$
 - Iteration complexity is linear in n (with line search)

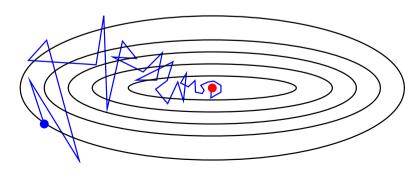
- Stochastic gradient descent: $\theta_t = \theta_{t-1} \gamma_t f'_{i(t)}(\theta_{t-1})$
 - Sampling with replacement: i(t) random element of $\{1,\ldots,n\}$
 - Convergence rate in O(1/t)
 - Iteration complexity is independent of n (step size selection?)

• Minimizing
$$g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$
 with $f_i(\theta) = \ell(y_i, \theta^{\top} \Phi(x_i)) + \mu \Omega(\theta)$

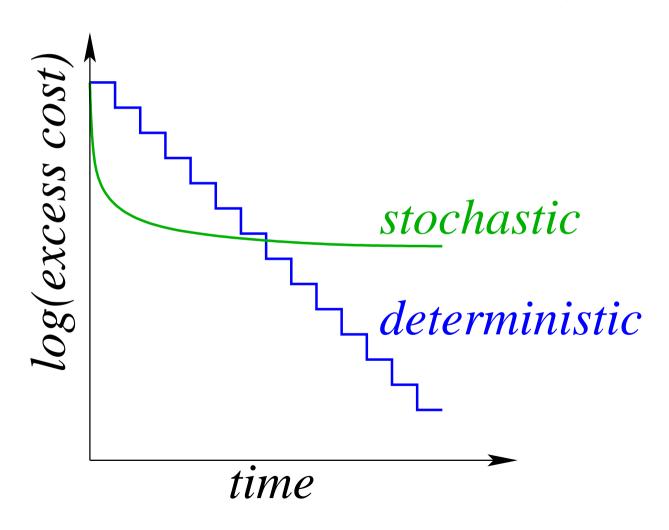
• Batch gradient descent: $\theta_t = \theta_{t-1} - \gamma_t g'(\theta_{t-1}) = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n f_i'(\theta_{t-1})$



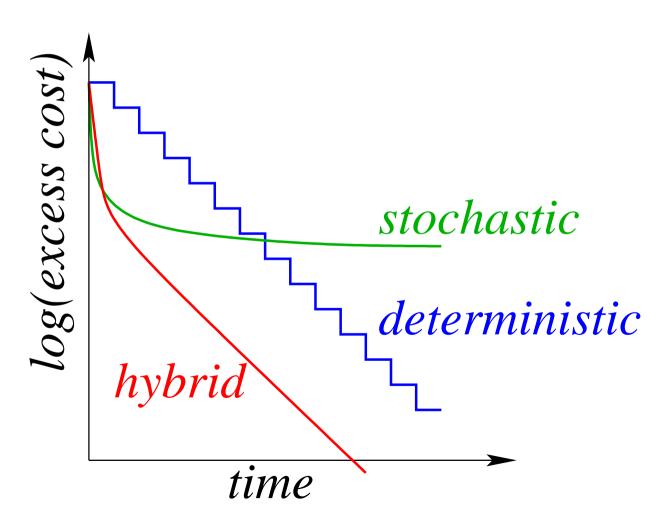
• Stochastic gradient descent: $\theta_t = \theta_{t-1} - \gamma_t f'_{i(t)}(\theta_{t-1})$



 \bullet Goal = best of both worlds: Linear rate with O(1) iteration cost Robustness to step size



 \bullet Goal = best of both worlds: Linear rate with O(1) iteration cost Robustness to step size



Accelerating gradient methods - Related work

Nesterov acceleration

- Nesterov (1983, 2004)
- Better linear rate but still O(n) iteration cost
- Hybrid methods, incremental average gradient, increasing batch size
 - Bertsekas (1997); Blatt et al. (2008); Friedlander and Schmidt (2011)
 - Linear rate, but iterations make full passes through the data.

Accelerating gradient methods - Related work

- Momentum, gradient/iterate averaging, stochastic version of accelerated batch gradient methods
 - Polyak and Juditsky (1992); Tseng (1998); Sunehag et al. (2009);
 Ghadimi and Lan (2010); Xiao (2010)
 - Can improve constants, but still have sublinear O(1/t) rate
- Constant step-size stochastic gradient (SG), accelerated SG
 - Kesten (1958); Delyon and Juditsky (1993); Solodov (1998); Nedic and Bertsekas (2000)
 - Linear convergence, but only up to a fixed tolerance.
- Stochastic methods in the dual
 - Shalev-Shwartz and Zhang (2012)
 - Similar linear rate but limited choice for the f_i 's

Stochastic average gradient (Le Roux, Schmidt, and Bach, 2012)

- Stochastic average gradient (SAG) iteration
 - Keep in memory the gradients of all functions f_i , $i = 1, \ldots, n$
 - Random selection $i(t) \in \{1, \dots, n\}$ with replacement
 - $\text{ Iteration: } \theta_t = \theta_{t-1} \frac{\gamma_t}{n} \sum_{i=1}^n y_i^t \text{ with } y_i^t = \begin{cases} f_i'(\theta_{t-1}) & \text{if } i = i(t) \\ y_i^{t-1} & \text{otherwise} \end{cases}$

Stochastic average gradient (Le Roux, Schmidt, and Bach, 2012)

- Stochastic average gradient (SAG) iteration
 - Keep in memory the gradients of all functions f_i , $i = 1, \ldots, n$
 - Random selection $i(t) \in \{1, \dots, n\}$ with replacement

$$-\text{ Iteration: } \theta_t = \theta_{t-1} - \frac{\gamma_t}{n} \sum_{i=1}^n y_i^t \text{ with } y_i^t = \begin{cases} f_i'(\theta_{t-1}) & \text{if } i = i(t) \\ y_i^{t-1} & \text{otherwise} \end{cases}$$

- Stochastic version of incremental average gradient (Blatt et al., 2008)
- Extra memory requirement
 - Supervised machine learning
 - If $f_i(\theta) = \ell_i(y_i, \Phi(x_i)^\top \theta)$, then $f_i'(\theta) = \ell_i'(y_i, \Phi(x_i)^\top \theta) \Phi(x_i)$
 - Only need to store n real numbers

Stochastic average gradient - Convergence analysis

Assumptions

- Each f_i is L-smooth, $i = 1, \ldots, n$
- $-g = \frac{1}{n} \sum_{i=1}^{n} f_i$ is μ -strongly convex (with potentially $\mu = 0$)
- constant step size $\gamma_t = 1/(16L)$
- initialization with one pass of averaged SGD

Stochastic average gradient - Convergence analysis

Assumptions

- Each f_i is L-smooth, $i = 1, \ldots, n$
- $-g = \frac{1}{n} \sum_{i=1}^{n} f_i$ is μ -strongly convex (with potentially $\mu = 0$)
- constant step size $\gamma_t = 1/(16L)$
- initialization with one pass of averaged SGD
- Strongly convex case (Le Roux et al., 2012, 2013)

$$\mathbb{E}\left[g(\theta_t) - g(\theta_*)\right] \leqslant \left(\frac{8\sigma^2}{n\mu} + \frac{4L\|\theta_0 - \theta_*\|^2}{n}\right) \exp\left(-t \min\left\{\frac{1}{8n}, \frac{\mu}{16L}\right\}\right)$$

- Linear (exponential) convergence rate with O(1) iteration cost
- After one pass, reduction of cost by $\exp\left(-\min\left\{\frac{1}{8},\frac{n\mu}{16L}\right\}\right)$

Stochastic average gradient - Convergence analysis

Assumptions

- Each f_i is L-smooth, $i = 1, \ldots, n$
- $-g = \frac{1}{n} \sum_{i=1}^{n} f_i$ is μ -strongly convex (with potentially $\mu = 0$)
- constant step size $\gamma_t = 1/(16L)$
- initialization with one pass of averaged SGD
- Non-strongly convex case (Le Roux et al., 2013)

$$\mathbb{E}\left[g(\theta_t) - g(\theta_*)\right] \leqslant 48 \frac{\sigma^2 + L\|\theta_0 - \theta_*\|^2}{\sqrt{n}} \frac{n}{t}$$

- Improvement over regular batch and stochastic gradient
- Adaptivity to potentially hidden strong convexity

Convergence analysis - Proof sketch

- Main step: find "good" Lyapunov function $J(\theta_t, y_1^t, \dots, y_n^t)$
 - such that $\mathbb{E}[J(\theta_t, y_1^t, \dots, y_n^t) | \mathcal{F}_{t-1}] < J(\theta_{t-1}, y_1^{t-1}, \dots, y_n^{t-1})$
 - no natural candidates

Computer-aided proof

- Parameterize function $J(\theta_t, y_1^t, \dots, y_n^t) = g(\theta_t) g(\theta_*) + \text{quadratic}$
- Solve semidefinite program to obtain candidates (that depend on n,μ,L)
- Check validity with symbolic computations

Rate of convergence comparison

- ullet Assume that L=100, $\mu=.01$, and n=80000
 - Full gradient method has rate

$$\left(1 - \frac{\mu}{L}\right) = 0.9999$$

Accelerated gradient method has rate

$$(1 - \sqrt{\frac{\mu}{L}}) = 0.9900$$

- Running n iterations of SAG for the same cost has rate

$$\left(1 - \frac{1}{8n}\right)^n = 0.8825$$

- Fastest possible first-order method has rate

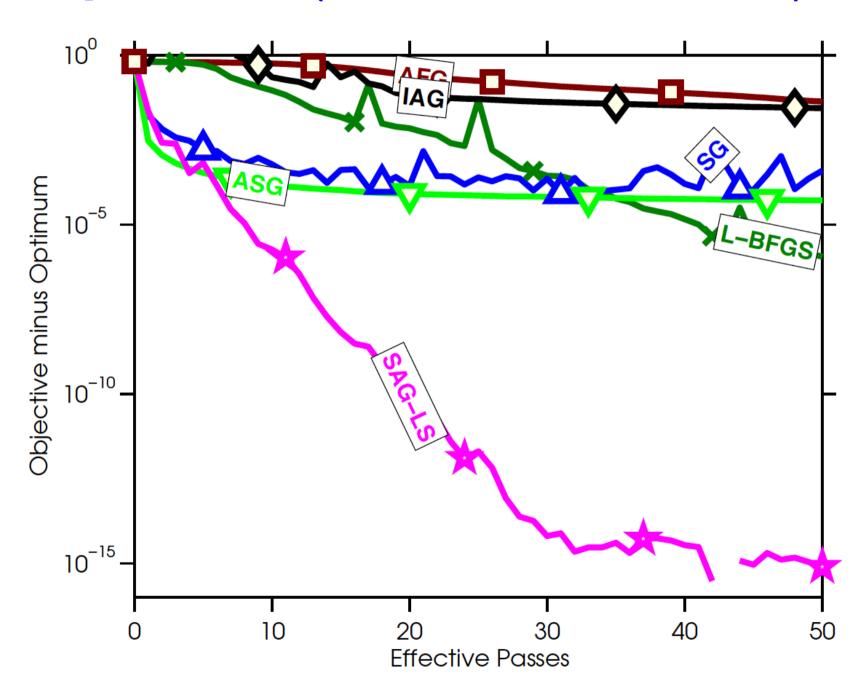
$$\left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2 = 0.9608$$

- Beating two lower bounds (with additional assumptions)
 - (1) stochastic gradient and (2) full gradient

Stochastic average gradient Implementation details and extensions

- The algorithm can use sparsity in the features to reduce the storage and iteration cost
- Grouping functions together can further reduce the memory requirement
- ullet We have obtained good performance when L is not known with a heuristic line-search
- Algorithm allows non-uniform sampling
- Possibility of making proximal, coordinate-wise, and Newton-like variants

spam dataset (n = 92 189, d = 823 470)



Summary and future work

- Constant-step-size averaged stochastic gradient descent
 - Reaches convergence rate O(1/n) in all regimes
 - Improves on the $O(1/\sqrt{n})$ lower-bound of non-smooth problems
 - Efficient online Newton step for non-quadratic problems
 - Robustness to step-size selection
- Going beyond a single pass through the data

Summary and future work

- Constant-step-size averaged stochastic gradient descent
 - Reaches convergence rate O(1/n) in all regimes
 - Improves on the $O(1/\sqrt{n})$ lower-bound of non-smooth problems
 - Efficient online Newton step for non-quadratic problems
 - Robustness to step-size selection
- Going beyond a single pass through the data
- Extensions and future work
 - Pre-conditioning
 - Proximal extensions fo non-differentiable terms
 - kernels and non-parametric estimation
 - line-search
 - parallelization

Outline

1. Large-scale machine learning and optimization

- Traditional statistical analysis
- Classical methods for convex optimization

2. Non-smooth stochastic approximation

- Stochastic (sub)gradient and averaging
- Non-asymptotic results and lower bounds
- Strongly convex vs. non-strongly convex

3. Smooth stochastic approximation algorithms

- Asymptotic and non-asymptotic results
- 4. Beyond decaying step-sizes
- 5. Finite data sets

ConclusionsMachine learning and convex optimization

• Statistics with or without optimization?

- Significance of mixing algorithms with analysis
- Benefits of mixing algorithms with analysis

Open problems

- Non-parametric stochastic approximation
- Going beyond a single pass over the data (testing performance)
- Characterization of implicit regularization of online methods
- Further links between convex optimization and online learning/bandits

References

- A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization. *Information Theory, IEEE Transactions on*, 58(5):3235–3249, 2012.
- R. Aguech, E. Moulines, and P. Priouret. On a perturbation approach for the analysis of stochastic tracking algorithms. *SIAM J. Control and Optimization*, 39(3):872–899, 2000.
- F. Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression. Technical Report 00804431, HAL, 2013.
- F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In *Adv. NIPS*, 2011.
- F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with sparsity-inducing penalties. Technical Report 00613125, HAL, 2011.
- F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Structured sparsity through convex optimization, 2012.
- A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.
- Albert Benveniste, Michel Métivier, and Pierre Priouret. *Adaptive algorithms and stochastic approximations*. Springer Publishing Company, Incorporated, 2012.
- D. P. Bertsekas. A new class of incremental gradient methods for least squares problems. *SIAM Journal on Optimization*, 7(4):913–926, 1997.

- D. Blatt, A. O. Hero, and H. Gauchman. A convergent incremental gradient method with a constant step size. *SIAM Journal on Optimization*, 18(1):29–51, 2008.
- V. S. Borkar. Stochastic approximation with two time scales. *Systems & Control Letters*, 29(5): 291–294, 1997.
- Vivek S Borkar. Stochastic approximation. Cambridge Books, 2008.
- L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Adv. NIPS, 2008.
- L. Bottou and Y. Le Cun. On-line learning for very large data sets. *Applied Stochastic Models in Business and Industry*, 21(2):137–151, 2005.
- S. Boucheron and P. Massart. A high-dimensional wilks phenomenon. *Probability theory and related fields*, 150(3-4):405–433, 2011.
- S. Boucheron, O. Bousquet, G. Lugosi, et al. Theory of classification: A survey of some recent advances. *ESAIM Probability and statistics*, 9:323–375, 2005.
- N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning algorithms. *Information Theory, IEEE Transactions on*, 50(9):2050–2057, 2004.
- B. Delyon and A. Juditsky. Accelerated stochastic approximation. *SIAM Journal on Optimization*, 3: 868–881, 1993.
- J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. *Journal of Machine Learning Research*, 10:2899–2934, 2009. ISSN 1532-4435.
- M. P. Friedlander and M. Schmidt. Hybrid deterministic-stochastic methods for data fitting. arXiv:1104.2373, 2011.
- S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex stochastic

- composite optimization. Optimization Online, July, 2010.
- Saeed Ghadimi and Guanghui Lan. Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization, ii: shrinking procedures and optimal algorithms. *SIAM Journal on Optimization*, 23(4):2061–2089, 2013.
- L. Györfi and H. Walk. On the averaged stochastic approximation for linear regression. *SIAM Journal on Control and Optimization*, 34(1):31–61, 1996.
- E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization. *Machine Learning*, 69(2):169–192, 2007.
- Chonghai Hu, James T Kwok, and Weike Pan. Accelerated gradient methods for stochastic optimization and online learning. In *NIPS*, volume 22, pages 781–789, 2009.
- H. Kesten. Accelerated stochastic approximation. Ann. Math. Stat., 29(1):41-59, 1958.
- H. J. Kushner and G. G. Yin. *Stochastic approximation and recursive algorithms and applications*. Springer-Verlag, second edition, 2003.
- Guanghui Lan, Arkadi Nemirovski, and Alexander Shapiro. Validation analysis of mirror descent stochastic approximation method. *Mathematical programming*, 134(2):425–458, 2012.
- N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence rate for strongly-convex optimization with finite training sets. In *Adv. NIPS*, 2012.
- N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence rate for strongly-convex optimization with finite training sets. Technical Report 00674995, HAL, 2013.
- O. Macchi. Adaptive processing: The least mean squares approach with applications in transmission.

- Wiley West Sussex, 1995.
- A. Nedic and D. Bertsekas. Convergence rate of incremental subgradient algorithms. *Stochastic Optimization: Algorithms and Applications*, pages 263–304, 2000.
- A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. *SIAM Journal on Optimization*, 19(4):1574–1609, 2009.
- A. S. Nemirovsky and D. B. Yudin. *Problem complexity and method efficiency in optimization.* Wiley & Sons, 1983.
- Y. Nesterov. A method for solving a convex programming problem with rate of convergence $O(1/k^2)$. Soviet Math. Doklady, 269(3):543–547, 1983.
- Y. Nesterov. *Introductory lectures on convex optimization: a basic course*. Kluwer Academic Publishers, 2004.
- Y. Nesterov. Gradient methods for minimizing composite objective function. *Center for Operations Research and Econometrics (CORE), Catholic University of Louvain, Tech. Rep*, 76, 2007.
- Y. Nesterov. Primal-dual subgradient methods for convex problems. *Mathematical programming*, 120 (1):221–259, 2009.
- Y. Nesterov and A. Nemirovski. *Interior-point polynomial algorithms in convex programming*. SIAM studies in Applied Mathematics, 1994.
- Y. Nesterov and J. P. Vial. Confidence level solutions for stochastic programming. *Automatica*, 44(6): 1559–1568, 2008. ISSN 0005-1098.
- B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. *SIAM Journal on Control and Optimization*, 30(4):838–855, 1992.

- H. Robbins and S. Monro. A stochastic approximation method. *Ann. Math. Statistics*, 22:400–407, 1951. ISSN 0003-4851.
- D. Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Technical Report 781, Cornell University Operations Research and Industrial Engineering, 1988.
- M. Schmidt, N. Le Roux, and F. Bach. Optimization with approximate gradients. Technical report, HAL, 2011.
- B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.
- S. Shalev-Shwartz and N. Srebro. SVM optimization: inverse dependence on training set size. In *Proc. ICML*, 2008.
- S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss minimization. Technical Report 1209.1873, Arxiv, 2012.
- S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for svm. In *Proc. ICML*, 2007.
- S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Stochastic convex optimization. In *proc. COLT*, 2009.
- J. Shawe-Taylor and N. Cristianini. *Kernel Methods for Pattern Analysis*. Cambridge University Press, 2004.
- M.V. Solodov. Incremental gradient algorithms with stepsizes bounded away from zero. Computational Optimization and Applications, 11(1):23-35, 1998.
- K. Sridharan, N. Srebro, and S. Shalev-Shwartz. Fast rates for regularized objectives. 2008.
- P. Sunehag, J. Trumpf, SVN Vishwanathan, and N. Schraudolph. Variable metric stochastic

- approximation theory. International Conference on Artificial Intelligence and Statistics, 2009.
- P. Tseng. An incremental gradient(-projection) method with momentum term and adaptive stepsize rule. SIAM Journal on Optimization, 8(2):506–531, 1998.
- A. B. Tsybakov. Optimal rates of aggregation. 2003.
- A. W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge Univ. press, 2000.
- L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. *Journal of Machine Learning Research*, 9:2543–2596, 2010. ISSN 1532-4435.