Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

¹CNRS

²École Normale Supérieure (Paris), LIENS, Équipe SIERRA

Cergy, January 30 - February 2, 2012

Outline of the lectures

- Model selection via penalization, with application to change-point detection
- Resampling methods for penalization, and robustness to heteroscedasticity in regression
- Oross-validation for model/estimator selection, with application to detecting changes in the mean of a signal

Cross-validation for model/estimator selection, with application to detecting changes in the mean of a signal

Outline

- Cross-validation
- 2 Cross-validation based estimator selection
- Change-point detection
- V-fold penalization
- Conclusion

- Cross-validation

Reminder

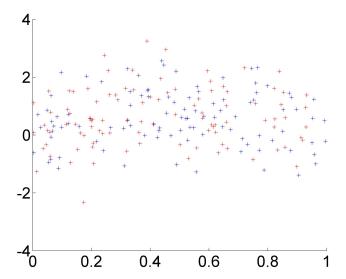
- Data: $D_n = (\xi_1, \dots, \xi_n) \in \Xi^n$, $D_n \sim P^{\otimes n}$
- Excess loss

$$\ell\left(s^{\star},t\right) = P\gamma(t) - P\gamma(s^{\star})$$

- Statistical algorithms: $\forall m \in \mathcal{M}_n, \ \mathcal{A}_m : \bigcup_{n \in \mathbb{N}} \Xi^n \mapsto \mathbb{S}$ $\mathcal{A}_m(D_n) = \widehat{s}_m(D_n) \in \mathbb{S}$ is an estimator of s^*
- Estimation/prediction goal: find $\widehat{m}(D_n) \in \mathcal{M}$ such that $\ell\left(s^{\star},\widehat{s}_{\widehat{m}(D_n)}(D_n)\right)$ is minimal
- ⇒ Unbiased risk estimation principle

Hold-out

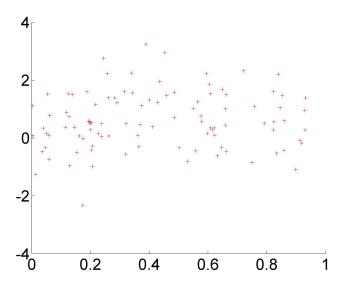
Cross-validation



Hold-out: training sample

Cross-validation

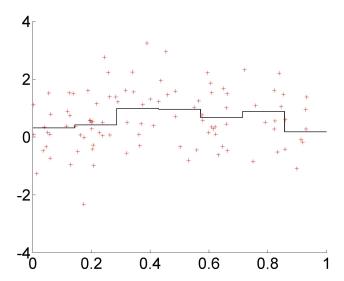
00000000000000



Hold-out: training sample

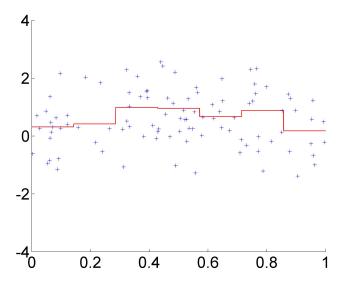
Cross-validation

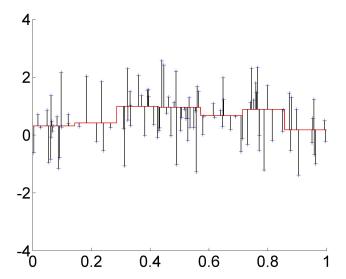
00000000000000



Hold-out: validation sample

Cross-validation





$$\underbrace{\xi_1 \ , \ \dots \ , \ \xi_{n_t}}_{\text{Training } (I^{(t)})} \quad , \quad \underbrace{\xi_{n_t+1} \ , \ \dots \ , \ \xi_n}_{\text{Validation } (I^{(v)})}$$

$$\widehat{s}_m^{(t)} := \mathcal{A}_m \left(D_n^{(t)} \right) \quad \text{where} \quad D_n^{(t)} := (\xi_i)_{i \in I^{(t)}}$$

$$\Rightarrow \widehat{\mathcal{R}}^{\mathrm{val}}\left(\mathcal{A}_{m}; D_{n}; I^{(t)}\right) = P_{n}^{(v)} \gamma\left(\widehat{s}_{m}^{(t)}\right) = \frac{1}{n_{v}} \sum_{i \in I^{(v)}} \gamma\left(\mathcal{A}_{m}\left(D_{n}^{(t)}\right); \xi_{i}\right)$$

 $P_n^{(v)} = \frac{1}{n_v} \sum_{i \in I(v)} \delta_{\xi_i} \qquad n_v := n - n_t$

General definition of cross-validation

• B > 1 training sets:

Cross-validation

$$I_1^{(t)},\ldots,I_B^{(t)}\subset\{1,\ldots,n\}$$

• Cross-validation estimator of the risk of A_m :

$$\widehat{\mathcal{R}}^{\text{vc}}\left(\mathcal{A}_{m}; D_{n}; \left(I_{j}^{(t)}\right)_{1 \leq j \leq B}\right) := \frac{1}{B} \sum_{i=1}^{B} \widehat{\mathcal{R}}^{\text{val}}\left(\mathcal{A}_{m}; D_{n}; I_{j}^{(t)}\right)$$

Chosen algorithm:

$$\widehat{m} \in \operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ \widehat{\mathcal{R}}^{\operatorname{vc}} \left(\mathcal{A}_m; D_n; \left(I_j^{(t)} \right)_{1 \leq j \leq B} \right) \right\}$$

• Usually, $\forall j$, $Card(I_i^{(t)}) = n_t$

 Leave-one-out (LOO), or delete-one CV, or ordinary cross-validation:

$$n_t = n - 1$$
 $B = n$

(Stone, 1974; Allen, 1974; Geisser, 1975)

Leave-p-out (LPO), or delete-p CV:

$$n_t = n - p$$
 $B = \begin{pmatrix} n \\ p \end{pmatrix}$

• V-fold cross-validation (VFCV, Geisser, 1975): $\mathcal{B} = (B_i)_{1 \le i \le V}$ partition of $\{1, \dots, n\}$

$$\widehat{\mathcal{R}}^{\mathrm{vf}}\left(\mathcal{A}_{m}; D_{n}; \mathcal{B}\right) = \frac{1}{V} \sum_{j=1}^{V} \widehat{\mathcal{R}}^{\mathrm{val}}\left(\mathcal{A}_{m}; D_{n}; \mathcal{B}_{j}^{c}\right)$$

- Repeated Learning-Testing (RLT, Breiman et al., 1984): $I_1^{(t)}, \ldots, I_R^{(t)} \subset \{1, \ldots, n\}$ of cardinality n_t , sampled uniformly without replacement
- Monte-Carlo cross-validation (MCCV, Picard & Cook, 1984): same with $I_1^{(t)}, \ldots, I_R^{(t)}$ of cardinality n_t , sampled uniformly with replacement (i.i.d.)

- Generalized cross-validation (GCV): rotation-invariant version of LOO for linear regression, closer to C_n and C_l than to cross-validation (Efron, 1986, 2004)
- Analytical approximation to leave-p-out (Shao, 1993)
- Leave-one-out bootstrap (Efron, 1983): stabilized version of leave-one-out heuristical bias-correction \Rightarrow .632 bootstrap \Rightarrow .632+ bootstrap (Efron & Tibshirani, 1997)

Bias of the cross-validation estimator

• Target: $P\gamma(A_m(D_n))$

Cross-validation

• Bias: if $\forall j$, $Card(I_i^{(t)}) = n_t$

Bias of the cross-validation estimator

• Target: $P\gamma(A_m(D_n))$

Cross-validation

• Bias: if $\forall j$, Card $(I_j^{(t)}) = n_t$

$$\mathbb{E}\left[\widehat{\mathcal{R}}^{\text{vc}}\left(\mathcal{A}_{m}; D_{n}; \left(I_{j}^{(t)}\right)_{1 \leq j \leq B}\right)\right] = \mathbb{E}\left[P\gamma\left(\mathcal{A}_{m}\left(D_{n_{t}}\right)\right)\right]$$

$$\Rightarrow \text{ bias } \mathbb{E}\left[P\gamma\left(\mathcal{A}_{m}\left(D_{n_{t}}\right)\right)\right] - \mathbb{E}\left[P\gamma\left(\mathcal{A}_{m}\left(D_{n}\right)\right)\right]$$

- Smart rule (Devroye, Györfi & Lugosi, 1996): $n \mapsto \mathbb{E}\left[P\gamma\left(\mathcal{A}_m\left(D_n\right)\right)\right]$ non-increasing \Rightarrow the bias is non-negative, minimal for $n_t = n 1$
- Example: regressogram:

$$\mathbb{E}\left[P\gamma(\widehat{s}_m(D_n))\right] \approx P\gamma(s_m^{\star}) + \frac{1}{n}\sum_{\lambda \in m} \sigma_{\lambda}^2$$

• Corrected V-fold cross-validation (Burman, 1989, 1990):

$$\widehat{\mathcal{R}}^{\mathrm{vf}}\left(\mathcal{A}_{m}; D_{n}; \mathcal{B}\right) + P_{n}\gamma\left(\mathcal{A}_{m}(D_{n})\right) - \frac{1}{V}\sum_{j=1}^{V} P_{n}\gamma\left(\mathcal{A}_{m}\left(D_{n}^{(-B_{j})}\right)\right)$$

- + the same for Repeated Learning-Testing
- Asymptotical result: bias = $\mathcal{O}(n^{-2})$ (Burman, 1989)

Variability of the cross-validation estimator

$$\operatorname{\mathsf{var}}\left[\widehat{\mathcal{R}}^{\operatorname{vc}}\left(\mathcal{A}_m;D_n;\left(I_j^{(t)}\right)_{1\leq j\leq B}\right)\right]$$

Variability sources:

Cross-validation

$$\mathsf{var}\left[\widehat{\mathcal{R}}^{\mathsf{vc}}\left(\mathcal{A}_{m}; D_{n}; \left(I_{j}^{(t)}\right)_{1 \leq j \leq B}\right)\right]$$

Variability sources:

Cross-validation

• (n_t, n_v) : hold-out case (Nadeau & Bengio, 2003)

$$\begin{aligned} &\operatorname{var}\left[\widehat{\mathcal{R}}^{\operatorname{val}}\left(\mathcal{A}_{m};D_{n};I^{(t)}\right)\right] \\ &= \mathbb{E}\left[\operatorname{var}\left(P_{n}^{(v)}\gamma\left(\mathcal{A}_{m}(D_{n}^{(t)})\right) \middle| D_{n}^{(t)}\right)\right] + \operatorname{var}\left[P\gamma\left(\mathcal{A}_{m}(D_{n_{t}})\right)\right] \\ &= \frac{1}{n_{v}}\mathbb{E}\left[\operatorname{var}\left(\gamma\left(\widehat{s},\xi\right)\middle| \widehat{s} = \mathcal{A}_{m}(D_{n}^{(t)})\right)\right] + \operatorname{var}\left[P\gamma\left(\mathcal{A}_{m}(D_{n_{t}})\right)\right] \end{aligned}$$

$$\operatorname{var}\left[\widehat{\mathcal{R}}^{\operatorname{vc}}\left(\mathcal{A}_m; D_n; \left(I_j^{(t)}\right)_{1 \leq j \leq B}\right)\right]$$

Variability sources:

Cross-validation

• (n_t, n_v) : hold-out case (Nadeau & Bengio, 2003)

$$\begin{aligned} &\operatorname{var}\left[\widehat{\mathcal{R}}^{\operatorname{val}}\left(\mathcal{A}_{m};D_{n};I^{(t)}\right)\right] \\ &= \mathbb{E}\left[\operatorname{var}\left(P_{n}^{(v)}\gamma\left(\mathcal{A}_{m}(D_{n}^{(t)})\right) \middle| D_{n}^{(t)}\right)\right] + \operatorname{var}\left[P\gamma\left(\mathcal{A}_{m}(D_{n_{t}})\right)\right] \\ &= \frac{1}{n_{v}}\mathbb{E}\left[\operatorname{var}\left(\gamma\left(\widehat{s},\xi\right)\middle| \widehat{s} = \mathcal{A}_{m}(D_{n}^{(t)})\right)\right] + \operatorname{var}\left[P\gamma\left(\mathcal{A}_{m}(D_{n_{t}})\right)\right] \end{aligned}$$

- Stability of A_m (Bousquet & Elisseff, 2002)
- Number of splits B
- Problem: B, n_t , n_v linked for VFCV and LPO

• Linear regression, least-squares, special case (Burman, 1989):

$$\frac{2\sigma^2}{n} + \frac{4\sigma^4}{n^2} \left[\frac{4}{V} + \frac{4}{V-1} + \frac{2}{(V-1)^2} + \frac{1}{(V-1)^3} \right] + o(n^{-2})$$

Results on variability

Cross-validation

• Linear regression, least-squares, special case (Burman, 1989):

$$\frac{2\sigma^2}{n} + \frac{4\sigma^4}{n^2} \left[4 + \frac{4}{V-1} + \frac{2}{(V-1)^2} + \frac{1}{(V-1)^3} \right] + o\left(n^{-2}\right)$$

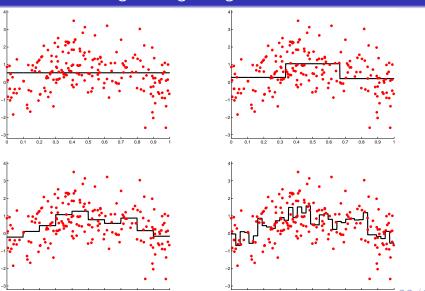
- Explicit quantification in regression (LPO) and density estimation (VFCV, LPO): Celisse (2008), A. & Lerasle (2012)
- LOO quite variable when A_m is unstable (e.g., k-NN or CART), much less when A_m is stable (e.g., least-squares estimators; see Molinaro et al., 2005)
- Data-driven estimation of the variability of cross-validation difficult: no universal unbiased estimator (RLT, Nadeau & Bengio, 2003; VFCV, Bengio & Grandvalet, 2004), several estimators proposed (ibid.; Markatou et al., 2005; Celisse & Robin, 2008)

Outline

- 2 Cross-validation based estimator selection

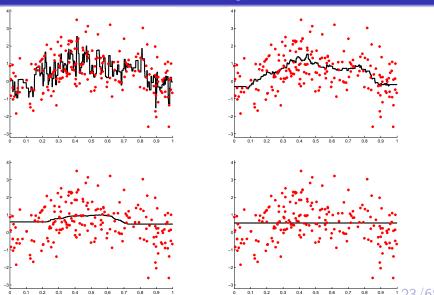
Model selection: regular regressograms

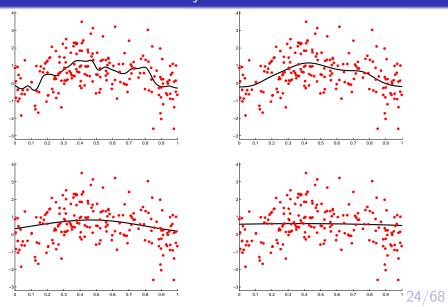
CV-based estimator selection



Estimator selection: k nearest neighbours

CV-based estimator selection





Estimator selection problem

- ullet Collection of statistical algorithms given: $(\mathcal{A}_m)_{m\in\mathcal{M}}$
- Problem: choosing among $(A_m(D_n))_{m \in \mathcal{M}} = (\widehat{s}_m(D_n))_{m \in \mathcal{M}}$

Estimator selection problem

- Collection of statistical algorithms given: $(A_m)_{m \in \mathcal{M}}$
- Problem: choosing among $(A_m(D_n))_{m \in \mathcal{M}} = (\widehat{s}_m(D_n))_{m \in \mathcal{M}}$
- Examples:
 - model selection
 - calibration (choice of k or of the distance for k-NN, choice of the regularization parameter, choice of some kernel, and so on)
 - choosing among algorithms of different nature, e.g., k-NN and SVM

Goal: estimation or prediction

- Main goal: find \widehat{m} minimizing $\ell\left(s^{\star},\widehat{s}_{\widehat{m}(D_n)}(D_n)\right)$
- Oracle: $m^* \in \arg\min_{m \in \mathcal{M}_n} \{ \ell(s^*, \widehat{s}_m(D_n)) \}$

- Main goal: find \widehat{m} minimizing $\ell\left(s^{\star},\widehat{s}_{\widehat{m}(D_n)}(D_n)\right)$
- Oracle: $m^* \in \arg\min_{m \in \mathcal{M}_n} \{ \ell(s^*, \widehat{s}_m(D_n)) \}$
- Oracle inequality (in expectation or with high probability):

$$\ell(s^*, \widehat{s}_{\widehat{m}}) \leq C \inf_{m \in \mathcal{M}_n} \{\ell(s^*, \widehat{s}_m(D_n))\} + R_n$$

• Non-asymptotic: all parameters can vary with n, in particular the collection $\mathcal{M} = \mathcal{M}_n$

Goal: estimation or prediction

- Main goal: find \widehat{m} minimizing $\ell\left(s^{\star}, \widehat{s}_{\widehat{m}(D_n)}(D_n)\right)$
- Oracle: $m^* \in \operatorname{arg\,min}_{m \in \mathcal{M}_n} \{ \ell(s^*, \widehat{s}_m(D_n)) \}$
- Oracle inequality (in expectation or with high probability):

$$\ell(s^*, \widehat{s}_{\widehat{m}}) \leq C \inf_{m \in \mathcal{M}_n} \{\ell(s^*, \widehat{s}_m(D_n))\} + R_n$$

- Non-asymptotic: all parameters can vary with n, in particular the collection $\mathcal{M} = \mathcal{M}_n$
- Adaptation (e.g., in the minimax sense) to the regularity of s^* , to variations of $\mathbb{E}\left[\varepsilon^2 \mid X\right]$, and so on (if $(\mathcal{A}_m)_{m \in \mathcal{M}_n}$ is well chosen)

Link between risk estimation and estimator selection

- Unbiased risk estimation principle
 - ⇒ the important quantity (asymptotically) is the bias
- What is the best criterion? In principle, the best \hat{m} is the minimizer of the best risk estimator.
- Sometimes more tricky (Breiman & Spector, 1992):
 - Only m "close" to the oracle m^* really count
 - Overpenalization sometimes necessary (many models or small signal-to-noise ratio)

Lemma

On the event Ω where for every $m, m' \in \mathcal{M}_n$.

$$(\operatorname{crit}(m) - P\gamma(\widehat{s}_m(D_n))) - (\operatorname{crit}(m') - P\gamma(\widehat{s}_{m'}(D_n)))$$

 $\leq A(m) + B(m')$

$$\forall \widehat{m} \in \operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ \operatorname{crit}(m) \right\}$$
$$\ell\left(s^{\star}, \widehat{s}_{\widehat{m}}(D_n)\right) - B(\widehat{m}) \leq \inf_{m \in \mathcal{M}_n} \left\{ \ell\left(s^{\star}, \widehat{s}_m(D_n)\right) + A(m) \right\}$$

Linear regression framework (Shao, 1997) representative of the general behaviour of cross-validation:

- If $n_t \sim n$, asymptotic optimality (CV $\sim C_p$)
- If $n_t \sim \kappa n$, $\kappa \in (0,1)$, CV $\sim \text{GIC}_{1+\kappa^{-1}}$ (i.e., overpenalizes from a factor $(1+\kappa^{-1})/2 \Rightarrow \text{asymptotically sub-optimal})$
- \Rightarrow valid for LPO (Shao, 1997), RLT (if $B \gg n^2$, Zhang, 1993)

- $Y = X + \sigma \varepsilon$ with ε bounded and $\sigma > 0$
- $ullet \ \mathcal{M} = \mathcal{M}_n^{ ext{(reg)}} \ ext{(regular histograms over } \mathcal{X} = [0,1])$
- \widehat{m} obtained by V-fold cross-validation with a fixed V as n increases

Theorem (A., 2008)

With probability $1 - Ln^{-2}$,

$$\ell\left(s^{\star},\widehat{s}_{\widehat{m}}\right) \geq \left(1 + \kappa(V)\right) \inf_{m \in \mathcal{M}_n} \left\{\ell\left(s^{\star},\widehat{s}_m\right)\right\}$$

where $\kappa(V) > 0$

• If $n_{v} \to \infty$ fast enough, one can "easily" prove the hold-out performs at least as well as

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P\gamma \left(\mathcal{A}_m(D_{n_t}) \right) \right\}$$

 van der Laan, Dudoit & van der Vaart (2006): same property for LPO, VFCV and MCCV in a fairly general setting • If $n_v \to \infty$ fast enough, one can "easily" prove the hold-out performs at least as well as

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P\gamma \left(\mathcal{A}_m(D_{n_t}) \right) \right\}$$

- van der Laan, Dudoit & van der Vaart (2006): same property for LPO, VFCV and MCCV in a fairly general setting
- Regressograms: VFCV suboptimal, but still adaptive to heteroscedasticity (up to a multiplicative factor C(V) > 1)
- LPO in regression and density estimation when $p/n \in [a, b]$, 0 < a < b < 1 (Celisse, 2008)

• If $n_v \to \infty$ fast enough, one can "easily" prove the hold-out performs at least as well as

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P\gamma \left(\mathcal{A}_m(D_{n_t}) \right) \right\}$$

- van der Laan, Dudoit & van der Vaart (2006): same property for LPO, VFCV and MCCV in a fairly general setting
- Regressograms: VFCV suboptimal, but still adaptive to heteroscedasticity (up to a multiplicative factor C(V) > 1)
- LPO in regression and density estimation when $p/n \in [a, b]$, 0 < a < b < 1 (Celisse, 2008)
- Open problem: theoretical comparison taking B into account (hence the variability of cross-validation)

- Collection of algorithms $(A_m)_{m \in \mathcal{M}}$
- \bullet Goal: identify the best one for analyzing a new sample of size $n' \to \infty$

$$\mathit{m}_{0} \in \lim_{n' o \infty} \operatorname{argmin}_{\mathit{m} \in \mathcal{M}} \left\{ \mathbb{E} \left[\mathit{P}\gamma \left(\mathcal{A}_{\mathit{m}}(\mathit{D}'_{\mathit{n'}}) \right) \right] \right\}$$

Consistency:

$$\mathbb{P}\left(\widehat{m}(D_n)=m_0\right)\xrightarrow[n\to\infty]{}1$$

- Examples:
 - identification of the true model in model selection
 - parametric vs. non-parametric algorithm?
 - k-NN or SVM?
 - ..

Two algorithms A_1 and A_2

• For m = 1, 2

$$\left(\widehat{\mathcal{R}}^{\mathrm{val}}\left(\mathcal{A}_{m};D_{n};I_{j}^{(t)}\right)\right)_{1\leq j\leq B}$$

⇒ majority vote

$$\begin{aligned} \mathcal{V}_1(D_n) &= \mathsf{Card}\left\{j \; \mathsf{s.t.} \; \; \widehat{\mathcal{R}}^{\mathrm{val}}\left(\mathcal{A}_1; D_n; I_j^{(t)}\right) < \widehat{\mathcal{R}}^{\mathrm{val}}\left(\mathcal{A}_2; D_n; I_j^{(t)}\right)\right\} \\ \widehat{m} &= \begin{cases} 1 & \text{if} \quad \mathcal{V}_1(D_n) > n/2 \\ 2 & \text{otherwise} \end{cases} \end{aligned}$$

• Usual cross-validation: averaging before comparison

Cross-validation for identification: regression

- "Cross-validation paradox" (Yang, 2007)
- $r_{n,m}$: asymptotics of $\mathbb{E}\|\mathcal{A}_m(D_n) s^*\|_2$
- Goal: recover $\operatorname{argmin}_{m \in \mathcal{M}} r_{n,m}$
- Assumption: at least a factor C > 1 between $r_{n,1}$ and $r_{n,2}$

Cross-validation for identification: regression

- "Cross-validation paradox" (Yang, 2007)
- $r_{n,m}$: asymptotics of $\mathbb{E}\|\mathcal{A}_m(D_n) s^*\|_2$
- Goal: recover $\operatorname{argmin}_{m \in \mathcal{M}} r_{n,m}$
- Assumption: at least a factor C > 1 between $r_{n,1}$ and $r_{n,2}$
- VFCV, RLT, LPO (with voting) are (model) consistent if

$$n_{v}, n_{t} \rightarrow \infty$$
 and $\sqrt{n_{v}} \max_{m \in \mathcal{M}} r_{n_{t},m} \rightarrow \infty$

under some conditions on $(\|\mathcal{A}_m(D_n) - s^*\|_p)_{p=2,4,\infty}$

Cross-validation for identification: regression

- Parametric vs. parametric $(r_{n,m} \propto n^{-1/2})$ \Rightarrow the condition becomes $n_v \gg n_t \to \infty$
- Non-parametric vs. (non-)parametric ($\max_{m \in \mathcal{M}} r_{n,m} \gg n^{-1/2}$) $\Rightarrow n_t/n_v = \mathcal{O}(1)$ is sufficient, and we can have $n_t \sim n$ (not too close)
- Intuition:
 - risk estimated with precision $\propto n_{\rm v}^{-1/2}$
 - difference between risks of order $\max_{m \in \mathcal{M}} r_{n_t,m}$ \Rightarrow easier to distinguish algorithms with n_t small because the difference between the risks is larger (questionable in practice)

- Naive implementation: complexity proportional to B
 - ⇒ LPO untractable, LOO sometimes tractable
 - ⇒ VFCV, RLT and MCCV often better

- Naive implementation: complexity proportional to B
 - ⇒ LPO untractable, LOO sometimes tractable
 - ⇒ VFCV, RLT and MCCV often better
- Closed-form formulas for LPO in (least-squares) density estimation and regression (projection or kernel estimators): Celisse & Robin (2008), Celisse (2008)
 - ⇒ can be used for instance in change-point detection (with dynamic programming)
- Generalized cross-validation: generalization of a formula for LOO in linear regression

- Naive implementation: complexity proportional to B
 - ⇒ LPO untractable, LOO sometimes tractable
 - ⇒ VFCV, RLT and MCCV often better
- Closed-form formulas for LPO in (least-squares) density estimation and regression (projection or kernel estimators): Celisse & Robin (2008), Celisse (2008)
 - ⇒ can be used for instance in change-point detection (with dynamic programming)
- Generalized cross-validation: generalization of a formula for LOO in linear regression
- Without closed-form formulas, smart algorithms for LOO (linear discriminant analysis, Ripley, 1996; k-NN, Daudin & Mary-Huard, 2008): uses results obtained for previous data splits in order to avoid doing again part of the computations 36/68

Choosing among cross-validation methods

Trade-off between bias, variability and computational cost:

- Bias: increases as n_t decreases (except for bias-corrected methods) large SNR: the bias must be minimized small SNR: a small amount of bias is better ($\Rightarrow n_t = \kappa n$ for some $\kappa \in (0,1)$
- Variability: usually a decreasing function of B and with n_{v} , but it depends on the nature of algorithms considered (stability)
- Computational cost: proportional to B, except in some cases

VFCV: B and n_t functions of $V \Rightarrow$ complex problem (V = 10 is not always a good choice)

Choosing the training samples

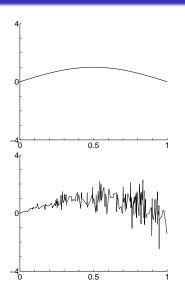
CV-based estimator selection

- Usual advice: take into account a possible stratification of data, e.g.,
 - distribution of the X_i in the feature space (regression)
 - distribution of the Y_i among the classes (classification)

but no clear theoretical result (simulations by Breiman & Spector, 1992: unsignificant difference).

• Dependency between the $I_i^{(t)}$? Intuitively, better to give similar roles to all data in the training and validation tasks \Rightarrow VFCV But no clear comparison between VFCV (strong dependency), RLT (weak dependency) and MCCV (independence).

VFCV: Simulations: sin, n = 200, $\sigma(x) = x$, 2 bin sizes



Models: $\mathcal{M}_n = \mathcal{M}_n^{(\text{reg},1/2)}$

$$\frac{\mathbb{E}\left[\ell\left(s^{\star},\widehat{s}_{\widehat{m}}\right)\right]}{\mathbb{E}\left[\inf_{m\in\mathcal{M}_{n}}\left\{\ell\left(s^{\star},\widehat{s}_{m}\right)\right\}\right]}$$

computed with N = 1000 samples

Mallows	3.69 ± 0.07
2-fold	3.69 ± 0.07 2.54 ± 0.05
5-fold	2.58 ± 0.06
10-fold	2.60 ± 0.06 2.58 ± 0.06
20-fold	2.58 ± 0.06
leave-one-out	2.59 ± 0.06

- Almost universal heuristics (i.i.d. data, no other explicit assumption)
- But $D_n \mapsto \mathcal{A}_{\widehat{m}(D_n)}$ still is a learning rule \Rightarrow No Free Lunch Theorems apply
- Implicit assumptions of cross-validation:
 - generalization error well estimated from a finite number of points n_{ν}
 - behaviour of the algorithm with n_t points representative from its behaviour with n points
 - + assumptions of the unbiased risk estimation principle

Dependent data

CV-based estimator selection

- Cross-validation wrong in principle (assumes i.i.d.)
- Stationary Markov process ⇒ CV still works (Burman & Nolan, 1992)
- Positive correlations ⇒ can overfit (Hart & Wehrly, 1986; Opsomer et al., 2001)

Dependent data

CV-based estimator selection

- Cross-validation wrong in principle (assumes i.i.d.)
- Stationary Markov process ⇒ CV still works (Burman & Nolan, 1992)
- Positive correlations ⇒ can overfit (Hart & Wehrly, 1986; Opsomer et al., 2001)
- Answer: for short range dependencies, choose $I^{(t)}$ and $I^{(v)}$ such that

$$\min_{i\in I^{(t)}, j\in I^{(v)}} |i-j| \ge h > 0$$

⇒ modified CV (Chu & Marron, 1991), h-block CV (can be bias-corrected, Burman et al., 1994), and so on

- Model selection in regression, exponential number of models per dimension \Rightarrow minimal penalty of order $\ln(n)D_m/n$ (Birgé & Massart, 2007)
 - \Rightarrow cross-validation overfits (except maybe if $n_t \ll n$)

- Model selection in regression, exponential number of models per dimension \Rightarrow minimal penalty of order $\ln(n)D_m/n$ (Birgé & Massart, 2007)
 - \Rightarrow cross-validation overfits (except maybe if $n_t \ll n$)
- Wegkamp (2003): penalized hold-out
- A. & Celisse (2010): gather models of the same dimension, with application to change-point detection

- Change-point detection

Change-point detection and model selection

$$Y_i = \eta(t_i) + \sigma(t_i)\varepsilon_i$$
 with $\mathbb{E}\left[\varepsilon_i\right] = 0$ $\mathbb{E}\left[\varepsilon_i^2\right] = 1$

- Goal: detect the change-points of the mean η of the signal Y
- ⇒ Model selection, collection of regressograms with $\mathcal{M}_n = \mathfrak{P}_{interv}(\{t_1, \dots, t_n\})$ (partitions of \mathcal{X} into intervals)
 - Here: no assumption on the variance $\sigma(t_i)^2$

• "Birgé-Massart" penalty (assumes $\sigma(t_i) \equiv \sigma$):

$$\widehat{m} \in \operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma \left(\widehat{s}_m \right) + \frac{C \sigma^2 D_m}{n} \left(5 + 2 \ln \left(\frac{n}{D_m} \right) \right) \right\}$$

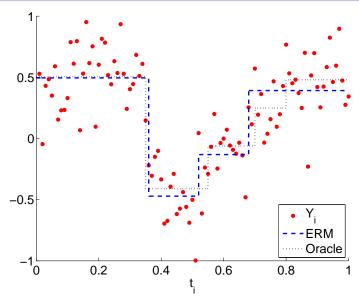
Equivalent to aggregating models of the same dimension:

$$\widetilde{S}_D := \bigcup_{m \in \mathcal{M}_n, D_m = D} S_m$$

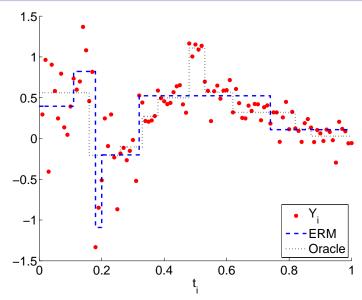
$$\widehat{s}_{D} \in \operatorname{argmin}_{t \in \widetilde{S}_{D}} \{ P_{n} \gamma(t) \}$$
 dynamic programming

$$\widehat{D} \in \operatorname{argmin}_{1 \leq D \leq n} \left\{ P_n \gamma \left(\widehat{s}_D \right) + \frac{C \sigma^2 D}{n} \left(5 + 2 \ln \left(\frac{n}{D} \right) \right) \right\}$$

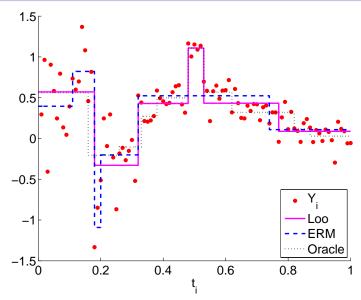
D=4, homoscedastic; n=100, $\sigma=0.25$

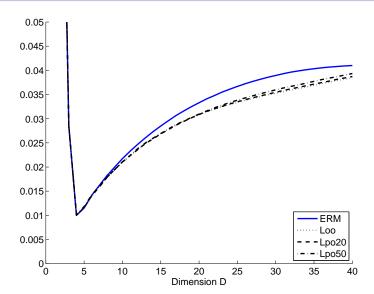


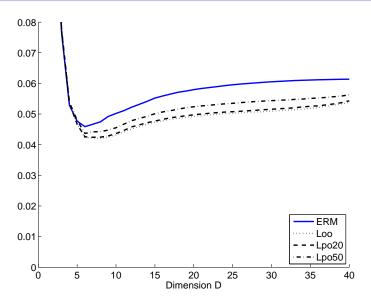
D=6, heteroscedastic; n=100, $||\sigma||=0.30$



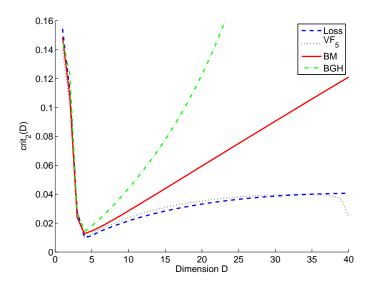
D=6, heteroscedastic; n=100, $||\sigma||=0.30$



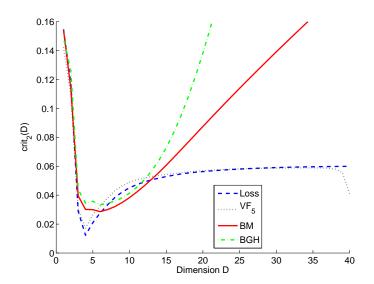




Homoscedastic: estimate of the loss as a function of \overline{D}



Heteroscedastic: estimate of the loss as a function of D



$$\widehat{m}(D) \in \operatorname{argmin}_{m \in \mathcal{M}_n, D_m = D} \left\{ \operatorname{crit}_1(m; (t_i, Y_i)_i) \right\}$$

Examples for crit₁: empirical risk, or leave-p-out or V-fold estimators of the risk (dynamic programming)

Change-point detection algorithms (A. & Celisse, 2010)

$$\widehat{m}(D) \in \operatorname{argmin}_{m \in \mathcal{M}_n, D_m = D} \{ \operatorname{crit}_1(m; (t_i, Y_i)_i) \}$$

Examples for crit₁: empirical risk, or leave-p-out or V-fold estimators of the risk (dynamic programming)

Select

$$\widehat{D} \in \operatorname{argmin}_{D \in \{1, \dots, D_{\max}\}} \{ \operatorname{crit}_2(D; (t_i, Y_i)_i; \operatorname{crit}_1(\cdot)) \}$$

Examples for $crit_2$: penalized empirical criterion, V-fold estimator of the risk

Competitors

• [Emp, BM]: assume $\sigma(\cdot) \equiv \sigma$

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma\left(\widehat{s}_m\right) + \frac{C\widehat{\sigma}^2 D_m}{n} \left(5 + 2\log\left(\frac{n}{D_m}\right)\right) \right\}$$

• [Emp, BM]: assume $\sigma(\cdot) \equiv \sigma$

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma \left(\widehat{s}_m \right) + \frac{C \widehat{\sigma}^2 D_m}{n} \left(5 + 2 \log \left(\frac{n}{D_m} \right) \right) \right\}$$

 BGH (Baraud, Giraud & Huet 2009): multiplicative penalty, $\sigma(\cdot) \equiv \sigma$

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma \left(\widehat{s}_m \right) \left[1 + \frac{\operatorname{pen}_{\operatorname{BGH}}(m)}{n - D_m} \right] \right\}$$

• [Emp, BM]: assume $\sigma(\cdot) \equiv \sigma$

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma\left(\widehat{s}_m\right) + \frac{C\widehat{\sigma}^2 D_m}{n} \left(5 + 2\log\left(\frac{n}{D_m}\right)\right) \right\}$$

 BGH (Baraud, Giraud & Huet 2009): multiplicative penalty, $\sigma(\cdot) \equiv \sigma$

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma \left(\widehat{s}_m \right) \left[1 + \frac{\operatorname{pen}_{\operatorname{BGH}}(m)}{n - D_m} \right] \right\}$$

• ZS (Zhang & Siegmund, 2007): modified BIC, $\sigma(\cdot) \equiv \sigma$

• [Emp, BM]: assume $\sigma(\cdot) \equiv \sigma$

 $\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma\left(\widehat{s}_m\right) + \frac{C\widehat{\sigma}^2 D_m}{n} \left(5 + 2\log\left(\frac{n}{D_m}\right)\right) \right\}$

 BGH (Baraud, Giraud & Huet 2009): multiplicative penalty, $\sigma(\cdot) \equiv \sigma$

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma \left(\widehat{s}_m \right) \left[1 + \frac{\operatorname{pen}_{\operatorname{BGH}}(m)}{n - D_m} \right] \right\}$$

- ZS (Zhang & Siegmund, 2007): modified BIC, $\sigma(\cdot) \equiv \sigma$
- PML (Picard et al., 2005): penalized maximum likelihood, looks for change-points of (η, σ) , assuming a Gaussian model

$$\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ \sum_{\lambda \in m} n \widehat{p}_{\lambda} \log \left(\frac{1}{n \widehat{p}_{\lambda}} \sum_{t_i \in \lambda} (Y_i - \widehat{s}_m(t_i))^2 \right) + \widehat{C}'' D_m \right\}$$

Simulations: comparison to the oracle (quadratic risk)

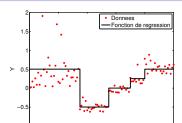
$$\frac{\mathbb{E}\left[\ell\left(s^{\star},\widehat{s}_{\widehat{m}}\right)\right]}{\mathbb{E}\left[\inf_{m\in\mathcal{M}_{n}}\left\{\ell\left(s^{\star},\widehat{s}_{m}\right)\right\}\right]} \qquad \qquad \textit{N} = 10\,000 \; \text{sample}$$

$\mathcal{L}(arepsilon)$	Gaussian	Gaussian	Gaussian
$\sigma(\cdot)$	homosc.	heterosc.	heterosc.
η	<i>s</i> ₂	<i>s</i> ₂	<i>s</i> ₃
$[Loo, VF_5]$	4.02 ± 0.02	4.95 ± 0.05	5.59 ± 0.02
$[\mathrm{Emp},\mathrm{VF_5}]$	3.99 ± 0.02	5.62 ± 0.05	6.13 ± 0.02
$[\mathrm{Emp},\mathrm{BM}]$	3.58 ± 0.02	9.25 ± 0.06	6.24 ± 0.02
BGH	3.52 ± 0.02	10.13 ± 0.07	6.31 ± 0.02
ZS	3.62 ± 0.02	6.50 ± 0.05	6.61 ± 0.02
PML	4.34 ± 0.02	2.73 ± 0.03	4.99 ± 0.03

Simulations: comparison to the oracle (quadratic risk)

$$\frac{\mathbb{E}\left[\ell\left(s^{\star},\widehat{s}_{\widehat{m}}\right)\right]}{\mathbb{E}\left[\inf_{m\in\mathcal{M}_{n}}\left\{\ell\left(s^{\star},\widehat{s}_{m}\right)\right\}\right]} \qquad \qquad \textit{N} = 10\,000 \; \text{sample}$$

$\mathcal{L}(arepsilon)$	Gaussian	Exponential	Exponential
$\sigma(\cdot)$	homosc.	heterosc.	heterosc.
η	<i>s</i> ₂	<i>s</i> ₂	<i>s</i> ₃
$[Loo, VF_5]$	4.02 ± 0.02	4.47 ± 0.05	5.11 ± 0.03
$[\mathrm{Emp},\mathrm{VF}_5]$	3.99 ± 0.02	5.98 ± 0.07	6.22 ± 0.04
$[\mathrm{Emp},\mathrm{BM}]$	3.58 ± 0.02	10.81 ± 0.09	6.45 ± 0.04
BGH	3.52 ± 0.02	11.67 ± 0.09	6.42 ± 0.04
ZS	3.62 ± 0.02	9.34 ± 0.09	6.83 ± 0.04
PML	4.34 ± 0.02	5.04 ± 0.06	5.40 ± 0.03

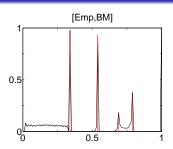


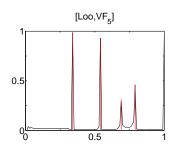
0.4

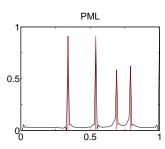
0.6

0.8

0.2

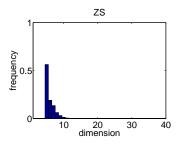


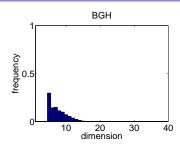


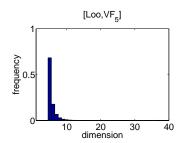


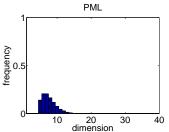
56/68

Simulations: selected dimension ($D_0 = 5$)









CV-based estimator selection

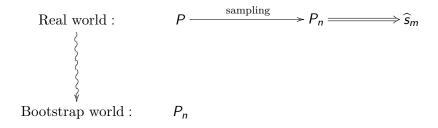
- V-fold penalization

Real world:
$$P \xrightarrow{\text{sampling}} P_n \Longrightarrow \widehat{s}_n$$

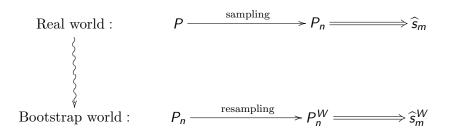
$$\operatorname{\mathsf{pen}}_{\operatorname{id}}(m) = (P - P_n)\gamma\left(\widehat{s}_m\right) = F(P, P_n)$$

Resampling heuristics (bootstrap, Efron 1979)

CV-based estimator selection

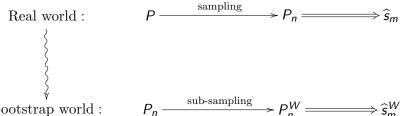


$$pen_{id}(m) = (P - P_n)\gamma(\widehat{s}_m) = F(P, P_n)$$



$$(P - P_n)\gamma\left(\widehat{s}_m\right) = F(P, P_n) \sim F(P_n, P_n^W) = (P_n - P_n^W)\gamma\left(\widehat{s}_m^W\right)$$

Resampling heuristics (bootstrap, Efron 1979)



Bootstrap world:
$$P_n \xrightarrow{\text{sub-sampling}} P_n^W \Longrightarrow \widehat{s}_m^W$$

$$(P - P_n)\gamma(\widehat{s}_m) = F(P, P_n) \leadsto F(P_n, P_n^W) = (P_n - P_n^W)\gamma(\widehat{s}_m^W)$$

V-fold:
$$P_n^W = \frac{1}{n - \mathsf{Card}(B_J)} \sum_{i \neq B_J} \delta_{(X_i, Y_i)}$$
 with $J \sim \mathcal{U}(1, \dots, V)$

Ideal penalty:

$$(P-P_n)(\gamma(\widehat{s}_m(D_n)))$$

V-fold penalty (A., 2008):

$$\operatorname{pen}_{\operatorname{VF}}(m; D_n; C; \mathcal{B}) = \frac{C}{V} \sum_{j=1}^{V} \left[\left(P_n - P_n^{(-B_j)} \right) \left(\gamma \left(\widehat{s}_m^{(-B_j)} \right) \right) \right]$$

$$\widehat{s}_m^{(-B_j)} = \widehat{s}_m \left(D_n^{(-B_j)} \right)$$

Selected model:

$$\widehat{m} \in \operatorname{argmin}_{m \in \mathcal{M}_{-}} \{ P_{n} \gamma(\widehat{s}_{m}) + \operatorname{pen}(m) \}$$

Assumptions:

$$\mathcal{B} = (B_j)_{1 \leq j \leq V} \text{ partition of } \{1, \dots, n\}$$
 and $\forall j \in \{1, \dots, V\}$, $\operatorname{Card}(B_j) = \frac{n}{V}$ (RegPart)

$$\forall 1 \leq N \leq n \; , \quad \mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(m; D_N)\right] = \frac{\gamma_m}{N}$$
 (Epenid)

Computing expectations

Assumptions:

$$\mathcal{B} = (B_j)_{1 \leq j \leq V} \text{ partition of } \{1, \dots, n\}$$
 and $\forall j \in \{1, \dots, V\}$, $\mathsf{Card}(B_j) = \frac{n}{V}$ (RegPart)

$$orall 1 \leq N \leq n \; , \quad \mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(m;D_N)\right] = \frac{\gamma_m}{N}$$
 (Epenid)

Proposition (A. 2011)

$$\mathbb{E}\left[\mathsf{pen}_{\mathrm{VF}}(m; D_n; C; \mathcal{B})\right] = \frac{C}{V-1} \mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(m; D_n)\right]$$

Oracle inequalities

- regressograms (A. 2008) or least-squares density estimation (A. & Lerasle, 2012)
- same assumptions as for similar results on exchangeable resampling penalties
- $2 < V < \ln(n)$ (for regressograms)

Oracle inequalities

- regressograms (A. 2008) or least-squares density estimation (A. & Lerasle, 2012)
- same assumptions as for similar results on exchangeable resampling penalties
- $2 < V < \ln(n)$ (for regressograms)

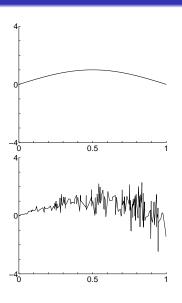
- regressograms (A. 2008) or least-squares density estimation (A. & Lerasle, 2012)
- same assumptions as for similar results on exchangeable resampling penalties
- $2 < V < \ln(n)$ (for regressograms)

Theorem (A. 2009)

With probability at least $1 - \lozenge n^{-2}$,

$$\ell\left(\mathfrak{s}^{\star},\widehat{s}_{\widehat{m}}\right) \leq \left(1 + (\ln(n))^{-1/5}\right) \inf_{m \in \mathcal{M}} \left\{\ell\left(\mathfrak{s}^{\star},\widehat{s}_{m}\right)\right\}$$

Simulations: sin, n = 200, $\sigma(x) = x$, $\mathcal{M}_n = \mathcal{M}_n^{(\text{reg}, 1/2)}$



Mallows	3.69 ± 0.07
2-fold	2.54 ± 0.05
5-fold	2.58 ± 0.06
10-fold	2.60 ± 0.06
20-fold	2.58 ± 0.06
leave-one-out	2.59 ± 0.06
pen 2-f	3.06 ± 0.07
pen 5-f	2.75 ± 0.06
pen 10-f	2.65 ± 0.06
pen Loo	2.59 ± 0.06
Mallows ×1.25	3.17 ± 0.07
pen 2-f $ imes 1.25$	2.75 ± 0.06
pen 5-f $ imes 1.25$	2.38 ± 0.06
pen 10-f $ imes 1.25$	2.28 ± 0.05
pen Loo $\times 1.25$	$2.21 \pm 0.05 \ 63/68$

Choice of V: density estimation (A. & Lerasle, 2012)

Least-squares density estimation: assuming (RegPart),

$$\begin{split} & \operatorname{\mathsf{var}} \left(\left(\operatorname{\mathsf{pen}}_{\operatorname{VF}}(m) - \operatorname{\mathsf{pen}}_{\operatorname{id}}(m) \right) - \left(\operatorname{\mathsf{pen}}_{\operatorname{VF}}(m') - \operatorname{\mathsf{pen}}_{\operatorname{id}}(m') \right) \right) \\ &= \frac{8}{n^2} \left[1 + \frac{1}{V-1} \right] F\left(m, m'\right) + \frac{1}{n} \operatorname{\mathsf{var}}_P\left(s_m^\star - s_{m'}^\star\right) \\ & \operatorname{\mathsf{with}} F\left(m, m'\right) > 0. \end{split}$$

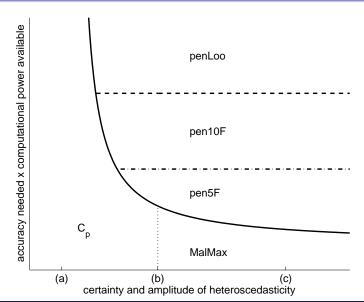
- Similar formula for *V*-fold cross-validation (with slightly larger constants and second order terms)
- For regular histograms, close to the oracle,

$$pprox \left(K + \frac{K'}{V-1}\right) \frac{\max\left\{D_m, D_{m'}\right\}}{n}$$
.

Outline

- Conclusion

Choice of an estimator selection procedure



Conclusion

- guarantees for practical procedures:
 - resampling(-based penalties)
 - cross-validation

Conclusion

- guarantees for practical procedures:
 - resampling(-based penalties)
 - cross-validation
- use theory for designing new procedures:
 - V-fold penalties for correcting the bias of VFCV

Conclusion

- guarantees for practical procedures:
 - resampling(-based penalties)
 - cross-validation
- use theory for designing new procedures:
 - V-fold penalties for correcting the bias of VFCV
- theory precise enough for explaining differences observed experimentally:
 - compare resampling weights
 - influence of V on V-fold methods

- guarantees for practical procedures:
 - resampling(-based penalties)
 - cross-validation
- use theory for designing new procedures:
 - V-fold penalties for correcting the bias of VFCV
- theory precise enough for explaining differences observed experimentally:
 - compare resampling weights
 - influence of V on V-fold methods
- "non-asymptotic" results

- guarantees for practical procedures:
 - cross-validation and resampling penalties outside "toy frameworks" (regressograms, least-squares density estimation)?

- guarantees for practical procedures:
 - cross-validation and resampling penalties outside "toy frameworks" (regressograms, least-squares density estimation)?
- theory precise enough for explaining differences observed experimentally:
 - choice of a resampling scheme / a cross-validation method?
 - explain the (non-systematic) variability of leave-one-out?

- guarantees for practical procedures:
 - cross-validation and resampling penalties outside "toy frameworks" (regressograms, least-squares density estimation)?
- theory precise enough for explaining differences observed experimentally:
 - choice of a resampling scheme / a cross-validation method?
 - explain the (non-systematic) variability of leave-one-out?
- "non-asymptotic" results:
 - overpenalization phenomenon?