Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

 $^{1}\mathrm{C}\mathrm{NRS}$

²École Normale Supérieure (Paris), LIENS, Équipe SIERRA

Cergy, January 30 - February 2, 2012

- Model selection via penalization, with application to change-point detection
- Resampling methods for penalization, and robustness to heteroscedasticity in regression
- Cross-validation for model/estimator selection, with application to detecting changes in the mean of a signal

Regressograms 0000000	Shape of the penalty	Resampling 00000000000	Regressograms & resampling	Density 000	Conclusion

Part II

Resampling methods for penalization, and robustness to heteroscedasticity in regression

Regressograms 0000000	Shape of the penalty	Resampling 00000000000	Regressograms & resampling	Density 000	Conclusion
Outline					

- 1 Regressograms in heteroscedastic regression
- 2 The shape of the penalty must be estimated
- 3 Resampling
- 4 Theoretical guarantees for regressograms
- 5 Least-squares density estimation

6 Conclusion

Regressograms	Shape of the penalty	Resampling 00000000000	Regressograms & resampling	Density 000	Conclusion
Outline					

1 Regressograms in heteroscedastic regression

2 The shape of the penalty must be estimated

3 Resampling

- 4 Theoretical guarantees for regressograms
- 5 Least-squares density estimation

6 Conclusion

Heteroscedastic regression framework

Regressograms

• Random design: $(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \mathbb{R}$ i.i.d.

 $Y_i = \eta(X_i) + \varepsilon_i$

 $\mathbb{E}\left[\varepsilon_{i} \mid X_{i}\right] = 0 \text{ and } \mathbb{E}\left[\varepsilon_{i}^{2} \mid X_{i}\right] = \sigma^{2}(X_{i})$

Heteroscedastic regression framework

• Random design: $(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \mathbb{R}$ i.i.d.

 $Y_i = \eta(X_i) + \varepsilon_i$ $\mathbb{E}\left[\varepsilon_i \mid X_i\right] = 0 \quad \text{and} \quad \mathbb{E}\left[\varepsilon_i^2 \mid X_i\right] = \sigma^2(X_i)$

Quadratic loss:

Regressograms

$$P\gamma(t) = \mathbb{E}_{(X,Y)\sim P}\left[\gamma(t;(X,Y))\right] = \mathbb{E}_{(X,Y)\sim P}\left\lfloor \left(t(X) - Y\right)^2 \right\rfloor$$

• Excess loss: $\eta = s^*$ and

$$\ell(s^{\star},t) = P\gamma(t) - P\gamma(s^{\star}) = \mathbb{E}_{(X,Y)\sim P}\left[(s^{\star}(X) - t(X))^2\right]$$

Regressograms 0●00000	Shape of the penalty	Resampling 00000000000	Regressograms & resampling	Density 000	Conclusion
Regresso	grams				

For any finite partition m of \mathcal{X}

$$S_m := \left\{ \sum_{\lambda \in m} \alpha_\lambda \mathbb{1}_\lambda \text{ s.t. } \alpha \in \mathbb{R}^m \right\}$$

 \Rightarrow least-squares estimator over S_m (regressogram):

$$\widehat{s}_{m} \in \arg\min_{t \in S_{m}} \{P_{n}\gamma(t)\} = \arg\min_{t \in S_{m}} \left\{\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - t(X_{i}))^{2}\right\}$$

Regressograms 0●00000	Shape of the penalty	Resampling 00000000000	Regressograms & resampling	Density 000	Conclusion
Regresso	grams				

For any finite partition m of \mathcal{X}

$$S_m := \left\{ \sum_{\lambda \in m} \alpha_\lambda \mathbb{1}_\lambda \text{ s.t. } \alpha \in \mathbb{R}^m \right\}$$

 \Rightarrow least-squares estimator over S_m (regressogram):

$$\widehat{s}_{m} \in \arg\min_{t \in S_{m}} \{P_{n}\gamma(t)\} = \arg\min_{t \in S_{m}} \left\{\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - t(X_{i}))^{2}\right\}$$

If for every $\lambda \in m$

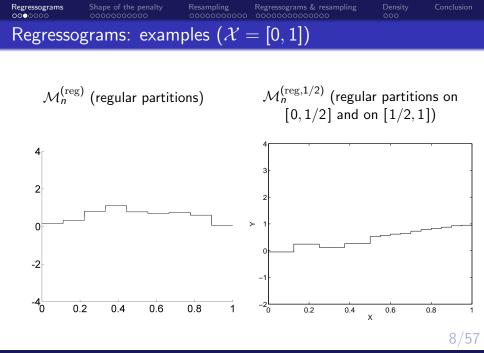
$$\widehat{p}_{\lambda} = \widehat{p}_{\lambda}(D_n) = \frac{1}{n} \operatorname{Card} \{ i \text{ s.t. } X_i \in \lambda \} > 0$$

-

57

Sylvain Arlot

$$\widehat{s}_m = \sum_{\lambda \in m} \widehat{\beta}_{\lambda} \mathbb{1}_{\lambda} \qquad \widehat{\beta}_{\lambda} := \frac{1}{n \widehat{p}_{\lambda}} \sum_{i \text{ s.t. } X_i \in \lambda} Y_i$$



Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

Regressograms 0000000

Regressograms: bias, ideal penalty

0000000 Regressograms: bias, ideal penalty

Regressograms

$$s_{m}^{\star} = \sum_{\lambda \in m} \beta_{\lambda} \mathbb{1}_{\lambda} \qquad \beta_{\lambda} := \mathbb{E}_{(X,Y) \sim P} \left[Y \mid X \in \lambda \right]$$
$$\ell\left(s^{\star}, s_{m}^{\star}\right) = \sum_{\lambda \in m} p_{\lambda} \left(\sigma_{\lambda}^{(d)}\right)^{2} \qquad \left(\sigma_{\lambda}^{(d)}\right)^{2} := \mathbb{E} \left[\left(\beta_{\lambda} - s^{\star}(X)\right)^{2} \mid X \in \lambda \right]$$

Regressograms: bias, ideal penalty

Regressograms

$$s_{m}^{\star} = \sum_{\lambda \in m} \beta_{\lambda} \mathbb{1}_{\lambda} \qquad \beta_{\lambda} := \mathbb{E}_{(X,Y) \sim P} \left[Y \mid X \in \lambda \right]$$
$$\ell\left(s^{\star}, s_{m}^{\star}\right) = \sum_{\lambda \in m} p_{\lambda} \left(\sigma_{\lambda}^{(d)}\right)^{2} \qquad \left(\sigma_{\lambda}^{(d)}\right)^{2} := \mathbb{E} \left[\left(\beta_{\lambda} - s^{\star}(X)\right)^{2} \mid X \in \lambda \right]$$

$$pen_{id}(m) = p_1(m) + p_2(m) - \delta(m)$$

$$p_1(m) = P\left(\gamma\left(\widehat{s}_m\right) - \gamma\left(s_m^{\star}\right)\right) = \sum_{\lambda \in m} p_\lambda \left(\widehat{\beta}_\lambda - \beta_\lambda\right)^2$$

$$p_2(m) = P_n\left(\gamma\left(s_m^{\star}\right) - \gamma\left(\widehat{s}_m\right)\right) = \sum_{\lambda \in m} \widehat{p}_\lambda \left(\widehat{\beta}_\lambda - \beta_\lambda\right)^2$$

$$\delta(m) = (P_n - P)\gamma\left(s_m^{\star}\right)$$

Model selection via penalization, resampling and cross-validation, with application to change-point detection

9/5 Sylvain Arlot RegressogramsShape of the penaltyResam0000000000000000000000

Regressograms & resampling 0 000000000000 Density C 000

Regressograms: conditional expectations

$$\mathcal{P}_m := (\mathbb{1}_{X_i \in \lambda})_{1 \le i \le n, \lambda \in m}$$

$$\mathbb{E}\left[p_1(m) \mid \mathcal{P}_m\right] = \frac{1}{n} \sum_{\lambda \in m} \frac{p_\lambda}{\widehat{p}_\lambda} \sigma_\lambda^2$$
$$\mathbb{E}\left[p_2(m) \mid \mathcal{P}_m\right] = \frac{1}{n} \sum_{\lambda \in m} \sigma_\lambda^2$$

$$\sigma_{\lambda}^{2} := \mathbb{E}_{(X,Y)\sim P} \left[(Y - \beta_{\lambda})^{2} \middle| X \in \lambda \right] = \left(\sigma_{\lambda}^{(d)} \right)^{2} + \left(\sigma_{\lambda}^{(r)} \right)^{2} \\ \left(\sigma_{\lambda}^{(r)} \right)^{2} := \mathbb{E}_{(X,Y)\sim P} \left[(\sigma(X))^{2} \middle| X \in \lambda \right]$$

Sylvain Arlot

Regressograms: expectations

$$\mathbb{E}[p_1(m)] = \frac{1}{n} \sum_{\lambda \in m} \sigma_{\lambda}^2 (1 + \delta_{n, p_{\lambda}})$$
$$\mathbb{E}[p_2(m)] = \frac{1}{n} \sum_{\lambda \in m} \sigma_{\lambda}^2$$

$$\delta_{n,p_{\lambda}} := \mathbb{E}\left[\left. rac{p_{\lambda}}{\widehat{p}_{\lambda}} \right| \ \widehat{p}_{\lambda} > 0
ight] - 1$$

 $-\exp(-np) \le \delta_{n,p} \le \min\left\{ 1 + rac{\kappa_1}{(np)^{1/4}} \ , \ \kappa_2
ight\}$

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

Regressograms: risk, expectation of the ideal penalty

$$\mathbb{E}\left[\ell\left(s^{\star},\widehat{s}_{m}\right)\right] = \sum_{\lambda \in m} p_{\lambda}\left(\sigma_{\lambda}^{(d)}\right)^{2} + \frac{1}{n} \sum_{\lambda \in m} \left(1 + \delta_{n,p_{\lambda}}\right) \sigma_{\lambda}^{2}$$

$$\mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(m)\right] = \frac{1}{n} \sum_{\lambda \in m} \left(2 + \delta_{n, p_{\lambda}}\right) \sigma_{\lambda}^{2}$$

12/57 Sylvain Arlot

Regressograms 0000000	Shape of the penalty	Regressograms & resampling	Density 000	Conclusion
Outline				

- Regressograms in heteroscedastic regression
- 2 The shape of the penalty must be estimated
- 3 Resampling
- 4 Theoretical guarantees for regressograms
- 5 Least-squares density estimation

6 Conclusion

$$Y = s^{\star}(X) + \varepsilon \quad \text{with} \quad X \sim \mathcal{U}([0,1])$$
$$\mathbb{E}\left[\varepsilon^{2} \mid X\right] = \sigma(X) \quad \text{and} \quad \int_{0}^{1/2} (\sigma(x))^{2} dx \neq \int_{1/2}^{1} (\sigma(x))^{2} dx$$

$$m \in \mathcal{M}_n^{(\mathrm{reg},1/2)}$$
: $D_{m,1}$ pieces on $\begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$
 $D_{m,2}$ pieces on $\begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$

Sylvain Arlot

$$Y = s^{\star}(X) + \varepsilon \quad \text{with} \quad X \sim \mathcal{U}([0,1])$$
$$\mathbb{E}\left[\varepsilon^{2} \mid X\right] = \sigma(X) \quad \text{and} \quad \int_{0}^{1/2} (\sigma(x))^{2} dx \neq \int_{1/2}^{1} (\sigma(x))^{2} dx$$

$$m \in \mathcal{M}_n^{(\mathrm{reg},1/2)}$$
: $D_{m,1}$ pieces on $\begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$
 $D_{m,2}$ pieces on $\begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$

$$\mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(m)\right] \approx \frac{4}{n} \left[D_{m,1} \int_0^{1/2} (\sigma(x))^2 \, dx + D_{m,2} \int_{1/2}^1 (\sigma(x))^2 \, dx \right]$$

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

Shape of the penalty Drawbacks of pen = pen (D_m) : an example

$$Y = s^{\star}(X) + \varepsilon \quad \text{with} \quad X \sim \mathcal{U}([0,1])$$
$$\mathcal{L}(\varepsilon \mid X) = \mathcal{N}(0, \sigma(X)^2)$$
$$s^{\star}(X) = X \qquad \sigma(X) = \mathbb{1}_{X \le \frac{1}{2}} + \frac{1}{20}\mathbb{1}_{X > 1/2}$$
$$\mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(m)\right] \approx \frac{2}{n} \left[D_{m,1} + \frac{D_{m,2}}{400}\right]$$

15/57Sylvain Arlot

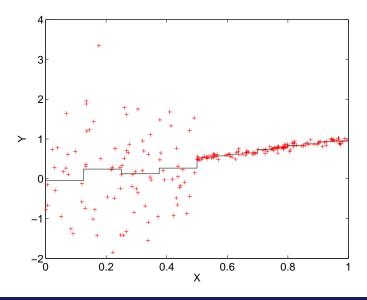
Regressograms

Shape of the penalty

Resampling 000000000 Regressograms & resampling

Density 000 Conclusion

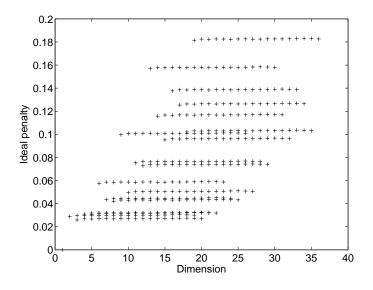
Example: data and oracle (n = 200)



Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

Example: $pen_{id}(m)$ as a function of D_m



Sylvain Arlot

Regressograms

Shape of the penalty

Resampling

Regressograms & resampling

Density Co 000

Penalties function of the dimension

Lemma

For any
$$D \in \mathcal{D}_n = \{ D_m \text{ s.t. } m \in \mathcal{M}_n \}$$

$$\mathcal{M}_{\mathsf{dim}}(D) := \operatorname{argmin}_{m \in \mathcal{M}_n \, \mathrm{s.t.} \, D_m = D} \left\{ P_n \gamma\left(\widehat{s}_m\right) \right\}$$

 $\mathcal{M}_{\mathsf{dim}} := \bigcup_{D \in \mathcal{D}_n} \mathcal{M}_{\mathsf{dim}}(D)$

Then, $\forall F : \mathcal{M}_n \mapsto \mathbb{R} \ \forall (X_i, Y_i)_{1 \leq i \leq n}$

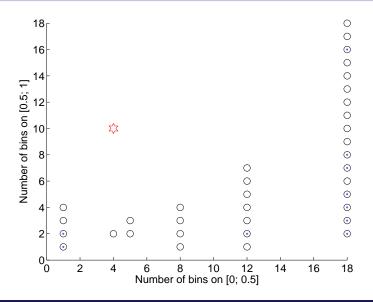
 $\operatorname{argmin}_{m \in \mathcal{M}_n} \left\{ P_n \gamma\left(\widehat{s}_m\right) + F(D_m) \right\} \subset \mathcal{M}_{\operatorname{dim}}$

18/57 Sylvain Arlot egressograms Shape of the penalty Resampling Regressog

Regressograms & resampling

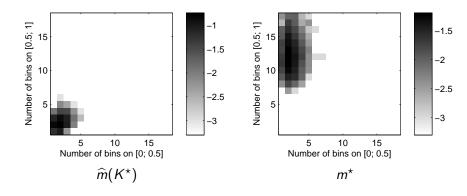
Density 000 Conclusion

Models that can be selected with $pen(D_m)$



Sylvain Arlot

Densities of $(D_{\widehat{m}(D^*),1}, D_{\widehat{m}(D^*),2})$ and $(D_{m^*,1}, D_{m^*,2})$ over N = 1000 samples



Sylvain Arlot

57

Regressograms Sh 0000000 Or

Shape of the penalty

sampling Regr

Regressograms & resampling 0 0000000000000 Density Concl

Towards a proof: concentration of pen_{id}

 $\text{Assumption:} \quad \left\| Y \right\|_{\infty} \leq A < \infty \quad \text{and} \quad \sigma(\cdot) \geq \sigma_{\min} > 0$

• Concentration of p_1 and p_2 :

if $\min_{\lambda \in m} \{ np_{\lambda} \} \ge \Diamond \ln(n)$, with probability at least $1 - Ln^{-\gamma}$, for i = 1, 2

$$|p_i(m) - \mathbb{E}\left[p_i(m)
ight]| \leq rac{L_{A,\sigma_{\min},\gamma}\left(\ln(n)
ight)^2}{\sqrt{D_m}}\mathbb{E}\left[p_2(m)
ight]$$

• Bernstein's inequality: with probability at least $1 - 2e^{-x}$,

$$\forall \theta \in (0,1] \ , \ |(P_n - P)(\gamma(s_m^{\star}) - \gamma(s^{\star}))| \leq \theta \ell(s^{\star}, s_m^{\star}) + \frac{6A^2x}{\frac{\theta n}{21/57}}$$

Regressograms

Shape of the penalty

Resampling

Regressograms & resampling

ensity Con

Heuristical proof: expectations

Ι

$$\mathbb{E}[p_1(m)] \approx \mathbb{E}[p_2(m)] \approx \frac{\beta_1 D_{m,1}}{n} + \frac{\beta_2 D_{m,1}}{n}$$
$$\beta_1 = 2 \int_0^{1/2} \sigma^2 \qquad \beta_2 = 2 \int_{1/2}^1 \sigma^2$$

$$\ell\left(s^{\star}, s_{m}^{\star}\right) \approx \frac{\alpha_{1}}{D_{m,1}^{2}} + \frac{\alpha_{2}}{D_{m,2}^{2}}$$
$$\alpha_{1} = \frac{1}{48} \int_{0}^{1/2} \left(s^{\star\prime}\right)^{2} \qquad \alpha_{2} = \frac{1}{48} \int_{1/2}^{1} \left(s^{\star\prime}\right)^{2}$$

22/57

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

Heuristical proof: expectations

$$\beta_1 = 2 \int_0^{1/2} \sigma^2 \qquad \beta_2 = 2 \int_{1/2}^1 \sigma^2$$
$$\alpha_1 = \frac{1}{48} \int_0^{1/2} (s^{\star\prime})^2 \qquad \alpha_2 = \frac{1}{48} \int_{1/2}^1 (s^{\star\prime})^2$$

$$P_{n}\gamma\left(\widehat{s}_{m}\right) - P\gamma\left(s^{\star}\right) \approx \frac{\alpha_{1}}{D_{m,1}^{2}} + \frac{\alpha_{2}}{D_{m,2}^{2}} - \frac{\beta_{1}D_{m,1}}{n} - \frac{\beta_{2}D_{m,1}}{n}$$
$$\ell\left(s^{\star}, \widehat{s}_{m}\right) \approx \frac{\alpha_{1}}{D_{m,1}^{2}} + \frac{\alpha_{2}}{D_{m,2}^{2}} + \frac{\beta_{1}D_{m,1}}{n} + \frac{\beta_{2}D_{m,1}}{n}$$

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

Regressograms

Shape of the penalty

Resampling

Regressograms & resampling

ensity Conclus 00

Heuristical proof: expectations

$$\beta_1 = 2 \int_0^{1/2} \sigma^2 > \beta_2 = 2 \int_{1/2}^1 \sigma^2$$
$$\alpha_1 = \frac{1}{48} \int_0^{1/2} (s^{\star\prime})^2 \qquad \alpha_2 = \frac{1}{48} \int_{1/2}^1 (s^{\star\prime})^2$$

$$P_n\gamma\left(\hat{s}_m\right) - P\gamma\left(s^{\star}\right) \approx \frac{\alpha_1}{D_{m,1}^2} + \frac{\alpha_2}{D_{m,2}^2} - \frac{\beta_1 D_{m,1}}{n} - \frac{\beta_2 D_{m,1}}{n}$$
$$\ell\left(s^{\star}, \hat{s}_m\right) \approx \frac{\alpha_1}{D_{m,1}^2} + \frac{\alpha_2}{D_{m,2}^2} + \frac{\beta_1 D_{m,1}}{n} + \frac{\beta_2 D_{m,1}}{n}$$

$$m^{\star} \approx \left(\left(\frac{2\alpha_1 n}{\beta_1} \right)^{1/3} , \left(\frac{2\alpha_2 n}{\beta_2} \right)^{1/3} \right)$$

Sylvain Arlot

Drawbacks of pen = pen (D_m) : theory

$$Y = s^{\star}(X) + \varepsilon \quad \text{with} \quad X \sim \mathcal{U}([0,1]) \quad , \qquad \mathbb{E}\left[\varepsilon^{2} \mid X\right] = \sigma(X)$$

and
$$\sigma_{a}^{2} = \int_{0}^{1/2} (\sigma(x))^{2} dx \neq \int_{1/2}^{1} (\sigma(x))^{2} dx = \sigma_{b}^{2}$$

Regressograms & resampling

Density

Theorem (A. 2008)

Shape of the penalty

Regressograms

$$\begin{split} & If \ \mathcal{M} = \mathcal{M}_{n}^{(\mathrm{reg},1/2)}, \ under \ "reasonable" \ assumptions \ on \ (s^{\star},\varepsilon,\sigma), \\ & \exists \eta(\sigma_{a}^{2}/\sigma_{b}^{2}) > 0 \ such \ that \ with \ probability \ at \ least \\ & 1 - C(\|\varepsilon\|_{\infty}, \sigma_{a}^{2}, \sigma_{b}^{2}, \|s^{\star'}\|_{\infty}, \|s^{\star''}\|_{\infty})n^{-2} \\ & \forall F \ , \ \forall \widehat{m}_{F} \in \arg \ \min_{m \in \mathcal{M}_{n}} \{P_{n}\gamma(\widehat{s}_{m}) + F(D_{m})\} \ , \\ & \ell\left(s^{\star}, \widehat{s}_{\widehat{m}_{F}}\right) \geq \left(1 + \eta\left(\frac{\sigma_{a}^{2}}{\sigma_{b}^{2}}\right)\right) \inf_{m \in \mathcal{M}_{n}} \{\ell(s^{\star}, \widehat{s}_{m})\} \end{split}$$

Sylvain Arlot

57

 Regressograms
 Shape of the penalty
 Resampling
 Regressograms
 Regressograms
 Density
 Conclusion

 Why should we estimate the shape of the penalty?

• $pen(D) = F(D) \Rightarrow loss of a factor <math>(1 + \eta) > 1$

24/57

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

- $pen(D) = F(D) \Rightarrow loss of a factor <math>(1 + \eta) > 1$
- $pen(m) = 2\mathbb{E}\left[\sigma(X)^2\right] D_m/n \Rightarrow possible burst of the risk$

24/57Svlvain Arlot

- $pen(D) = F(D) \Rightarrow loss of a factor <math>(1 + \eta) > 1$
- $pen(m) = 2\mathbb{E}\left[\sigma(X)^2\right] D_m/n \Rightarrow possible burst of the risk$
- $pen(m) = 2 \|\sigma\|_{\infty}^2 D_m/n \Rightarrow \text{ oracle-inequality with constant}$ $\mathcal{O}(\max \sigma^2 / \min \sigma^2)$

- $pen(D) = F(D) \Rightarrow loss of a factor <math>(1 + \eta) > 1$
- $pen(m) = 2\mathbb{E}\left[\sigma(X)^2\right] D_m/n \Rightarrow possible burst of the risk$
- $pen(m) = 2 \|\sigma\|_{\infty}^2 D_m/n \Rightarrow$ oracle-inequality with constant $\mathcal{O}(\max \sigma^2 / \min \sigma^2)$
- ⇒ must estimate $\mathbb{E}[\text{pen}_{id}(m)]$ for an oracle inequality with constant (1 + o(1)) and for avoiding overfitting

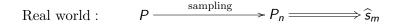
Regressograms 0000000	Shape of the penalty	Resampling	Regressograms & resampling	Density 000	Conclusion
Outline					

- Regressograms in heteroscedastic regression
- 2 The shape of the penalty must be estimated

3 Resampling

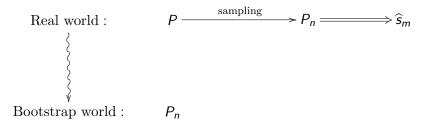
- 4 Theoretical guarantees for regressograms
- 5 Least-squares density estimation

6 Conclusion



$$\operatorname{pen}_{\operatorname{id}}(m) = (P - P_n)\gamma(\widehat{s}_m) = F(P, P_n)$$

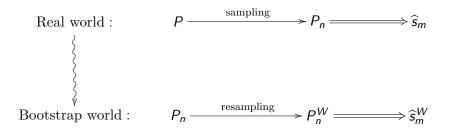
26/57Sylvain Arlot



$$\operatorname{pen}_{\operatorname{id}}(m) = (P - P_n)\gamma(\widehat{s}_m) = F(P, P_n)$$

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot



$$(P - P_n)\gamma(\widehat{s}_m) = F(P, P_n) \longrightarrow F(P_n, P_n^W) = (P_n - P_n^W)\gamma(\widehat{s}_m^W)$$

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

Regressograms

hape of the penalty

Resampling

Regressograms & resampling

ensity Cor 00

Exchangeable weighted resampling

$$P_n^W := \frac{1}{n} \sum_{i=1}^n W_i \delta_{\xi_i}$$

• Bootstrap:

$$W \sim \mathcal{M}\left(n; \frac{1}{n}, \ldots, \frac{1}{n}\right)$$

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Exchangeable weighted resampling

$$P_n^W := \frac{1}{n} \sum_{i=1}^n W_i \delta_{\xi_i}$$

• Efron(*m*) or *m* out of *n* bootstrap:

$$\frac{m}{n}W \sim \mathcal{M}\left(m;\frac{1}{n},\ldots,\frac{1}{n}\right)$$

Exchangeable weighted resampling

$$P_n^W := \frac{1}{n} \sum_{i=1}^n W_i \delta_{\xi_i} \quad \text{or} \quad \frac{1}{\sum_k W_k} \sum_{i=1}^n W_i \delta_{\xi_i} = \frac{1}{n} \sum_{i=1}^n \frac{W_i}{\overline{W}} \delta_{\xi_i}$$

• Efron(m) or m out of n bootstrap:

$$\frac{m}{n}W \sim \mathcal{M}\left(m;\frac{1}{n},\ldots,\frac{1}{n}\right)$$

Subsampling:

• Random-hold out(q), $q \in \{1, ..., n-1\}$:

$$W_i = rac{n}{q} \mathbb{1}_{i \in I}$$
 with $I \sim \mathcal{U}\left(\mathfrak{P}_q(\{1, \dots, n\})\right)$

• Rademacher(p) or Bernoulli:

$$pW_1,\ldots,pW_n$$
 i.i.d. $\sim \mathcal{B}(p)$

Sylvain Arlot

Regressograms Shape of th

ape of the penalty

Resampling 0000000000

Regressograms & resampling 0 0000000000000 Density Col

Theoretical justification: asymptotics

Theorem (van der Vaart & Wellner, 1996)

Let $(W_{n,1}, \ldots, W_{n,n}) \in \mathbb{R}^n$ be a non-negative random vector, exchangeable, independent from $\xi_{1...n}$, bounded and such that

$$n^{-1}\sum_{i=1}^{n} \left(W_{n,i} - \overline{W}_n\right)^2 \xrightarrow{(p)} c^2 > 0$$

Then, as n goes to infinity,

$$\sup_{h\in BL_1} \left| \mathbb{E}_W \left[h\left(\sqrt{n} \left(P_n^W - \overline{W}_n P_n \right) \right) \right] - \mathbb{E} \left[h\left(c \mathbb{G} \right) \right] \right| \xrightarrow{(p)} 0$$

where \mathbb{G} is a Gaussian process, limit of $\sqrt{n(P_n - P)}$, with zero mean and covariance function cov(f, g) = P(fg) - P(f)P(g).

Classical uses of resampling

- estimating a variance, a quadratic risk
- estimation and/or bias correction
- confidence intervals, *p*-values
- estimation of prediction error, model selection
- stabilization (bagging, random forests)

• ...

Regressograms Shape of the penalty conclusion concerns the penalty c

A resampling-based estimator of variance

Framework:

$$\xi_1, \ldots, \xi_n \text{ i.i.d. } \sim P \qquad \mathbb{E}\left[\xi_i\right] = \mu \quad \mathbb{E}\left[\left(\xi_i - \mu\right)^2\right] = \sigma^2$$

$$\sigma^{2} = n\mathbb{E}\left[\left(\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-\mu\right)^{2}\right] = n\mathbb{E}\left[\left(\mathbb{E}_{\xi\sim P_{n}}\xi-\mathbb{E}_{\xi\sim P}\xi\right)^{2}\right]$$
$$= n\mathbb{E}\left[F(P,P_{n})\right]$$

 \Rightarrow resampling-based estimator

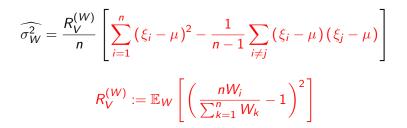
$$\widehat{\sigma_W^2} = n \mathbb{E}_W \left[F(P_n, P_n^W) \right]$$

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

A resampling-based estimator of variance

$$\widehat{\sigma_W^2} = n \mathbb{E}_W \left[F(P_n, P_n^W) \right]$$



Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

Classical unbiased estimator of variance:

$$\widehat{\sigma^2} = \frac{1}{n-1} \sum_{i=1}^n \left(\xi_i - \frac{1}{n} \sum_{k=1}^n \xi_k \right)^2$$

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Classical unbiased estimator of variance:

$$\widehat{\sigma^2} = \frac{1}{n-1} \sum_{i=1}^n \left(\xi_i - \frac{1}{n} \sum_{k=1}^n \xi_k \right)^2$$

$$\widehat{\sigma_W^2} = R_V^{(W)} \widehat{\sigma^2}$$
$$\Rightarrow \qquad \mathbb{E}\left[\widehat{\sigma_W^2}\right] = R_V^{(W)} \sigma^2$$

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

Regressograms 0000000	Shape of the penalty	Resampling 000000000000000000000000000000000000	Regressograms & resampling	Density 000	Conclusion
Resampli	ng and struc	ture			

- Properties of $F(P, P_n) = (\mathbb{E}_{\xi \sim P_n} \xi \mathbb{E}_{\xi \sim P} \xi)^2$:
 - exchangeable
 - translation-invariance
 - homogeneity
 - polynomial function of ξ_i and $\mathbb{E}_{\xi \sim P} \xi$
- $\Rightarrow \mathbb{E}_{W}[F(P_{n}, P_{n}^{W})]$ has similar properties

Regressograms 0000000	Shape of the penalty	Resampling 000000●0000	Regressograms & resampling	Density 000	Conclusion
Resampli	ng and struc	ture			

- Properties of $F(P, P_n) = (\mathbb{E}_{\xi \sim P_n} \xi \mathbb{E}_{\xi \sim P} \xi)^2$:
 - exchangeable
 - translation-invariance
 - homogeneity
 - polynomial function of ξ_i and $\mathbb{E}_{\xi \sim P} \xi$
- $\Rightarrow \mathbb{E}_{W}[F(P_{n}, P_{n}^{W})]$ has similar properties

$$\Rightarrow \qquad \mathbb{E}_{W}\left[F(P_{n},P_{n}^{W})\right]\propto\widehat{\sigma^{2}}$$

 Regressograms
 Shape of the penalty
 Resampling
 Regressograms & resampling
 Density
 Conclusion

 Resampling and concentration
 Conclusion
 Conclusion

Over-concentration phenomenon for the resampling-based estimator:

$$\operatorname{var}\left(n\left(\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-\mu\right)^{2}\right)=2\sigma^{4}+\frac{\mathbb{E}\left[\left(\xi_{1}-\mu\right)^{4}\right]-3\sigma^{4}}{n}$$
$$\operatorname{var}\left(\frac{1}{R_{V}^{(W)}\widehat{\sigma_{W}^{2}}}\right)=\frac{1}{n}\left(\mathbb{E}\left[\left(\xi_{1}-\mu\right)^{4}\right]-\sigma^{4}\right)+\frac{2}{n(n-1)}\sigma^{4}$$

33/57 Sylvain Arlot

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Resampling 000000000000

Computation of the multiplicative factor

$$R_V^{(W)} := \mathbb{E}_W \left[\left(\frac{nW_i}{\sum_{k=1}^n W_k} - 1 \right)^2 \right]$$

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

 Regressograms
 Shape of the penalty
 Resampling
 Regressograms & resampling
 Density
 Conclusion

 Computation of the multiplicative factor
 Conclusion
 Conclusion
 Conclusion
 Conclusion

$$R_V^{(W)} := \mathbb{E}_W \left[\left(\frac{nW_i}{\sum_{k=1}^n W_k} - 1 \right)^2 \right]$$

Efron(m):
Rademacher(p):
Random hold-out(q):
Leave-one-out = Rho(n-1):

$$R_V^{(W)} = \frac{n-1}{m}$$

 $R_V^{(W)} = \frac{1+\delta_{n,p}}{p} - 1 \approx \frac{1}{p} - 1$
 $R_V^{(W)} = \frac{n}{q} - 1$
 $R_V^{(W)} = \frac{1}{n-1}$

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

• Ideal penalty:

$$(P-P_n)(\gamma(\widehat{s}_m))=F(P,P_n)$$

• Resampling-based estimator of $\mathbb{E}[F(P, P_n)]$:

$$\mathsf{pen}(m) = C_W \mathbb{E}\left[(P_n - P_n^W)(\gamma(\widehat{s}_m^W)) \middle| (X_i, Y_i)_{1 \le i \le n} \right]$$

- bootstrap (Efron, 1983; Shibata, 1997), m out of n bootstrap for identification (Shao, 1996), general exchangeable weights (A. 2009)
- Multiplicative factor C_W: why? how can we estimate it?

Regressograms 0000000	Shape of the penalty	Resampling ○○○○○○○○○●	Regressograms & resampling	Density 000	Conclusion
Rademac	her penalties				

• Global penalties:

$$\operatorname{\mathsf{pen}}_{\operatorname{id}}(m) \le \operatorname{\mathsf{pen}}_{\operatorname{id}}^{\operatorname{glo}}(m) = \sup_{t \in S_m} (P - P_n)\gamma(t)$$

 Regressograms
 Shape of the penalty
 Resampling
 Regressograms & resampling
 Density
 Conclusion

 Rademacher penalties
 Conclusion
 Conclusion
 Conclusion
 Conclusion

• Global penalties:

$$\operatorname{pen}_{\operatorname{id}}(m) \leq \operatorname{pen}_{\operatorname{id}}^{\operatorname{glo}}(m) = \sup_{t \in S_m} (P - P_n)\gamma(t)$$

• Global Rademacher penalties in classification (Koltchinskii & Panchenko, 2001; Bartlett, Boucheron & Lugosi, 2002), exchangeable weights (Fromont, 2004)

$$\mathbb{E}\left[\sup_{t\in S_m}\left\{\frac{1}{n}\sum_{i=1}^n\varepsilon_i\gamma(t;\xi_i)\right\}\middle|P_n\right]$$

with $\varepsilon_1,\ldots,\varepsilon_n$ i.i.d. $\sim \mathcal{U}(\{-1,+1\})$

• Local Rademacher complexities (Bartlett, Bousquet & Mendelson, 2004; Koltchinskii, 2006)

Sylvain Arlot

Regressograms 0000000	Shape of the penalty	Resampling 00000000000	Regressograms & resampling	Density 000	Conclusion
Outline					

- Regressograms in heteroscedastic regression
- 2 The shape of the penalty must be estimated
- 3 Resampling
- 4 Theoretical guarantees for regressograms
- 5 Least-squares density estimation

6 Conclusion

Regressograms 0000000	Shape of the penalty	Resampling 00000000000	Regressograms & resampling	Density 000	Conclusion
Reminde	r .				

$$\widehat{s}_{m} = \sum_{\lambda \in m} \widehat{\beta}_{\lambda} \mathbb{1}_{\lambda} \quad \text{with} \quad \widehat{\beta}_{\lambda} := \frac{1}{n \widehat{p}_{\lambda}} \sum_{i \text{ s.t. } X_{i} \in \lambda} Y_{i}$$
$$\widehat{p}_{\lambda} = \widehat{p}_{\lambda}(D_{n}) = \frac{1}{n} \operatorname{Card} \left\{ i \text{ s.t. } X_{i} \in \lambda \right\}$$

$$pen_{id}(m) = p_1(m) + p_2(m) - \delta(m)$$

$$p_1(m) = P\left(\gamma\left(\widehat{s}_m\right) - \gamma\left(s_m^{\star}\right)\right) = \sum_{\lambda \in m} \left[p_\lambda\left(\widehat{\beta}_\lambda - \beta_\lambda\right)^2\right]$$

$$p_2(m) = P_n\left(\gamma\left(s_m^{\star}\right) - \gamma\left(\widehat{s}_m\right)\right) = \sum_{\lambda \in m} \left[\widehat{p}_\lambda\left(\widehat{\beta}_\lambda - \beta_\lambda\right)^2\right]$$

$$\delta(m) = (P_n - P)\gamma\left(s_m^{\star}\right)$$

38/57 Sylvain Arlot
 Regressograms
 Shape of the penalty
 Resampling
 Regressograms & resampling
 Density
 Conclusion

 00000000
 0000000000
 0000000000
 0000000000
 000
 0000000000
 000

Resampling-based penalty

$$\mathsf{pen}_{W}(m) = \frac{C_{W}}{n} \sum_{\lambda \in m} \frac{R_{1,W} + R_{2,W}}{n \widehat{p}_{\lambda} - 1} \left(S_{\lambda,2} - \frac{1}{n \widehat{p}_{\lambda}} S_{\lambda,1}^{2} \right) \mathbb{1}_{n \widehat{p}_{\lambda} \ge 2}$$

with
$$S_{\lambda,1} := \sum_{X_i \in \lambda} (Y_i - \beta_\lambda)$$
 $S_{\lambda,2} := \sum_{X_i \in \lambda} (Y_i - \beta_\lambda)^2$
 $R_{1,W}(n, \widehat{p}_\lambda) := \mathbb{E} \left[\frac{(W_1 - \widehat{W}_\lambda)^2}{\widehat{W}_\lambda^2} \middle| X_1 \in \lambda, \ \widehat{W}_\lambda > 0 \right]$
and $R_{2,W}(n, \widehat{p}_\lambda) := \mathbb{E} \left[\frac{(W_1 - \widehat{W}_\lambda)^2}{\widehat{W}_\lambda} \middle| X_1 \in \lambda \right]$

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

egressograms 000000 hape of the penalty

Resampling

Regressograms & resampling

Density Cond

Value of R_1 and R_2 : examples

$${\it R}_{1,W}(n,\widehat{p}_{\lambda})\sim {\it R}_{2,W}(n,\widehat{p}_{\lambda})$$
 as $n\widehat{p}_{\lambda}
ightarrow\infty$

$$C_{W,\infty}(n) := \lim_{n\widehat{p}_{\lambda} \to \infty} \frac{1}{R_{2,W}(n,\widehat{p}_{\lambda})}$$

Efron(m):

$$R_{2,W}(n,\widehat{p}_{\lambda}) = \frac{n}{m} \left(1 - \frac{1}{n\widehat{p}_{\lambda}}\right) \quad C_{W,\infty} = \frac{m}{n}$$
Rademacher(p):

$$R_{2,W}(n,\widehat{p}_{\lambda}) = \frac{1}{p} - 1 \qquad C_{W,\infty} = \frac{p}{1-p}$$
Random hold-out(q):

$$R_{2,W}(n,\widehat{p}_{\lambda}) = \frac{n}{q} - 1 \qquad C_{W,\infty} = \frac{q}{n-q}$$
Leave-one-out:

$$R_{2,W}(n,\widehat{p}_{\lambda}) = \frac{1}{n-1} \qquad C_{W,\infty} = n-1$$

Sylvain Arlot

Regressograms 0000000	Shape of the penalty	Resampling 00000000000	Regressograms & resampling	Density 000	Conclusion
Expectat	ions				

$$\mathbb{E}\left[\left.Y_{i}-\beta_{\lambda}\right| \ X_{i}\in\lambda\right]=0 \quad \text{and} \quad \mathbb{E}\left[\left.\left(\left.Y_{i}-\beta_{\lambda}\right.\right)^{2}\right| \ X_{i}\in\lambda\right]=\sigma_{\lambda}^{2}\right]$$

$$\mathbb{E}\left[\mathsf{pen}_{W}(m) \mid \mathcal{P}_{m}\right] = \frac{C_{W}}{n} \sum_{\lambda \in m} \left(R_{1,W} + R_{2,W}\right) \sigma_{\lambda}^{2} \mathbb{1}_{n\widehat{p}_{\lambda} \geq 2}$$
$$\mathbb{E}\left[\mathsf{pen}_{W}(m)\right] = \frac{C_{W}}{C_{W,\infty}} \frac{1}{n} \sum_{\lambda \in m} \left(2 + \overline{\delta}_{n,p_{\lambda}}^{(\mathrm{penW})}\right) \sigma_{\lambda}^{2}$$

with $\overline{\delta}_{n,p_{\lambda}}^{(\text{penW})} \rightarrow 0$ quand $np_{\lambda} \rightarrow +\infty$ \Rightarrow adaptation to heteroscedasticity

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

Regressograms

hape of the penalty 0000000000 Resampling

Regressograms & resampling

Density Concl

Concentration

Proposition (A. 2009)

- Bounded data: $\|Y_i\|_{\infty} \leq A < \infty$
- Lower-bounded noise: $\sigma(X_i) \ge \sigma_{\min} > 0$
- $\mathcal{L}(W)$ among Efr(n), Rad(1/2), Rho(n/2), Loo

For every $A_n \ge 2$, with probability at least $1 - L_1 n^{-\gamma}$,

$$pen_{W}(m) - \mathbb{E}\left[pen_{W}(m) \mid \mathcal{P}_{m}\right] | \mathbb{1}_{\min_{\lambda \in m} \{n\hat{p}_{\lambda}\} \ge A_{n}}$$
$$\leq \frac{C_{W}}{C_{W,\infty}} \frac{L_{2}(A/\sigma_{\min}, \gamma) \ln(n)}{\sqrt{A_{n}D_{m}}} \mathbb{E}\left[p_{2}(m)\right]$$

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

 Regressograms
 Shape of the penalty
 Resampling
 Regressograms & resampling
 Density
 Conclusive

 0000000
 0000000000
 0000000000
 0000000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Pathwise non-asymptotic oracle inequality

- $\mathcal{L}(W)$ among Efr(n), Rad(1/2), Rho(n/2), Loo
- $C_W \approx C_{W,\infty}$

 Regressograms
 Shape of the penalty
 Resampling
 Regressograms & resampling
 Density
 Conclusion

 ODDettermine
 Dettermine
 Dettermine
 Dettermine
 Dettermine
 Dettermine
 Dettermine

Pathwise non-asymptotic oracle inequality

- $\mathcal{L}(W)$ among Efr(n), Rad(1/2), Rho(n/2), Loo
- $C_W \approx C_{W,\infty}$
- $Card(\mathcal{M}_n) \leq C_{\mathcal{M}} n^{\alpha_{\mathcal{M}}}$
- Bounded data: $\|Y_i\|_{\infty} \leq A < \infty$
- Lower-bounded noise: $\sigma(X_i) \ge \sigma_{\min} > 0$

Regressograms Shape of the penalty Resampling Regressograms & resampling Density 000000000 0000000000 0000000000 0000000000 0000000000 0000 Pathwise non-asymptotic oracle inequality 0000000000 0000000000 0000000000 0000000000

- $\mathcal{L}(W)$ among Efr(n), Rad(1/2), Rho(n/2), Loo
- $C_W \approx C_{W,\infty}$
- $Card(\mathcal{M}_n) \leq C_{\mathcal{M}} n^{\alpha_{\mathcal{M}}}$
- Bounded data: $\|Y_i\|_{\infty} \leq A < \infty$
- Lower-bounded noise: $\sigma(X_i) \ge \sigma_{\min} > 0$
- $s^{\star} \in \mathcal{H}(\alpha, R)$ non-constant
- Pre-selected models: $\forall m \in \mathcal{M}$, $\min_{\lambda \in m} n \widehat{p}_{\lambda} \geq 3$

Pathwise non-asymptotic oracle inequality

Regressograms & resampling

Density

- $\mathcal{L}(W)$ among Efr(n), Rad(1/2), Rho(n/2), Loo
- $C_W \approx C_{W,\infty}$

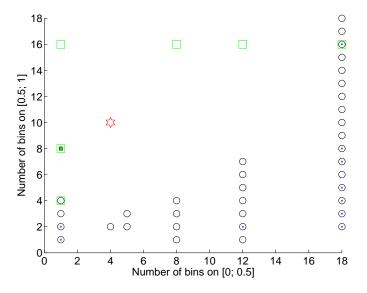
Regressograms

- $Card(\mathcal{M}_n) \leq C_{\mathcal{M}} n^{\alpha_{\mathcal{M}}}$
- Bounded data: $\|Y_i\|_{\infty} \leq A < \infty$
- Lower-bounded noise: $\sigma(X_i) \ge \sigma_{\min} > 0$
- $s^{\star} \in \mathcal{H}(\alpha, R)$ non-constant
- Pre-selected models: $\forall m \in \mathcal{M}$, $\min_{\lambda \in m} n \widehat{p}_{\lambda} \geq 3$

Theorem (A. 2009)

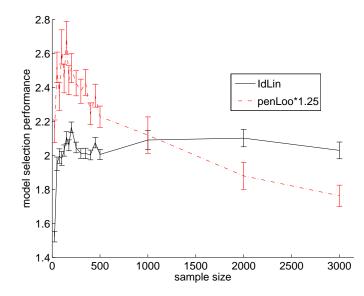
With probability at least $1 - \Diamond n^{-2}$,

$$\ell(s^{\star}, \widehat{s}_{\widehat{m}}) \leq \left(1 + (\ln(n))^{-1/5}\right) \inf_{m \in \mathcal{M}} \left\{\ell(s^{\star}, \widehat{s}_{m})\right\}$$



Model selection via penalization, resampling and cross-validation, with application to change-point detection

44/5 Sylvain Arlot



Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

Regressograms 0000000	Shape of the penalty	Resampling 00000000000	Regressograms & resampling	Density 000	Conclusion
Adaptatio	on				

 $\widetilde{s} := \widehat{s}_{\widehat{m}} \quad \text{with} \quad \widehat{m} \in \operatorname*{argmin}_{\substack{m \in \mathcal{M}_n^{(\text{reg})} \\ \min_{\lambda \in m} \{ n \widehat{p}_{\lambda} \} \ge 3}} \{ P_n \gamma (\widehat{s}_m) + \operatorname{pen}_W(m) \}$

Assumptions:

- Bounded data: $\|Y_i\|_{\infty} \leq A < \infty$
- Lower-bounded noise: $\sigma(X_i) \ge \sigma_{\min} > 0$
- Lower-bounded density of X: $\forall I \subset \mathcal{X}$, $\mathbb{P}(X \in I) \ge c_X^{\min} \operatorname{Leb}(I)$
- $s^{\star} = \eta \in \mathcal{H}(\alpha, R)$ with $\alpha \in (0, 1]$:

$$ert x_1, x_2 \in \mathcal{X} \hspace{0.2cm}, \hspace{0.2cm} |s^{\star}(x_1) - s^{\star}(x_2)| \leq R \, \|x_1 - x_2\|_{\infty}^{lpha}$$

Regressograms 0000000	Shape of the penalty	Resampling 00000000000	Regressograms & resampling	Density 000	Conclusion
Adaptatio	on				

$$\widetilde{s} := \widehat{s}_{\widehat{m}} \quad \text{with} \quad \widehat{m} \in \operatorname*{argmin}_{\substack{m \in \mathcal{M}_{n}^{(\text{reg})} \\ \min_{\lambda \in m} \{ n \widehat{p}_{\lambda} \} \ge 3}} \{ P_{n} \gamma \left(\widehat{s}_{m} \right) + \operatorname{pen}_{W}(m) \}$$

$$\mathbb{E}\left[\ell\left(s^{\star},\widetilde{s}\right)\right] \leq K_2 R^{\frac{2d}{2\alpha+d}} n^{\frac{-2\alpha}{2\alpha+d}} \left\|\sigma\right\|_{\infty}^{\frac{4\alpha}{2\alpha+d}} + \frac{K_3 A^2}{n^2}$$

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Regressograms 0000000	Shape of the penalty	Resampling 00000000000	Regressograms & resampling	Density 000	Conclusion
Adaptati	on				

$$\widetilde{s} := \widehat{s}_{\widehat{m}} \quad \text{with} \quad \widehat{m} \in \operatorname*{argmin}_{\substack{m \in \mathcal{M}_{n}^{(\text{reg})} \\ \min_{\lambda \in m} \{ n \widehat{p}_{\lambda} \} \ge 3}} \{ P_{n} \gamma \left(\widehat{s}_{m} \right) + \operatorname{pen}_{W}(m) \}$$

$$\mathbb{E}\left[\ell\left(s^{\star},\widetilde{s}\right)\right] \leq K_2 R^{\frac{2d}{2\alpha+d}} n^{\frac{-2\alpha}{2\alpha+d}} \left\|\sigma\right\|_{\infty}^{\frac{4\alpha}{2\alpha+d}} + \frac{K_3 A^2}{n^2}$$

and if $\sigma(\cdot)$ is K_{σ} -Lipschitz with at most J_{σ} jumps:

$$\mathbb{E}\left[\ell\left(s^{\star},\widetilde{s}\right)\right] \leq K_2 R^{\frac{2d}{2\alpha+d}} n^{\frac{-2\alpha}{2\alpha+d}} \left\|\sigma\right\|_{L^2(\mathsf{Leb})}^{\frac{4\alpha}{2\alpha+d}} + \frac{K_4 A^2}{n^2}$$

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

Regressograms

hape of the penalty

Resampling

Regressograms & resampling

Density Cond

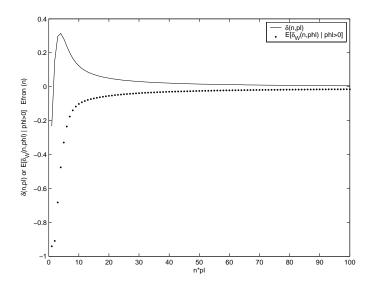
Theoretical comparison of weights: reminder

$$\mathbb{E}\left[\mathsf{pen}_{\mathrm{id}}(m)\right] = \frac{1}{n} \sum_{\lambda \in m} \left(2 + \delta_{n, p_{\lambda}}\right) \sigma_{\lambda}^{2}$$

and
$$\mathbb{E}[\operatorname{pen}_W(m)] = \frac{1}{n} \sum_{\lambda \in m} \left(2 + \overline{\delta}_{n,\widehat{p}_{\lambda}}^{(\operatorname{pen}W)}\right) \sigma_{\lambda}^2$$

47/57Sylvain Arlot

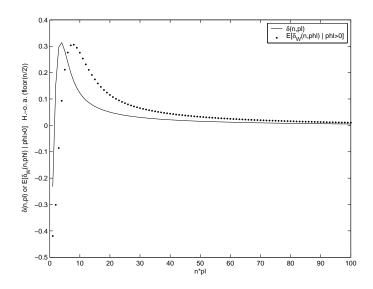
Model selection via penalization, resampling and cross-validation, with application to change-point detection



Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

Regressograms & resampling $\overline{\varsigma}(\text{penW})$ vs. $\delta_{n,p_{\lambda}}$: Rho $(n/2) \approx \text{Rad}(1/2)$ δ n, \widehat{p}_{λ}

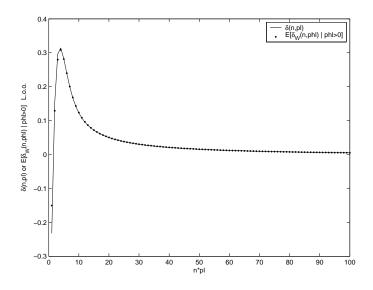


Model selection via penalization, resampling and cross-validation, with application to change-point detection

49 Sylvain Arlot

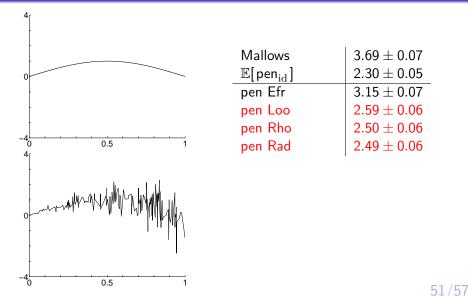
57

 $\overline{\delta}_{n,\widehat{\rho}_{\lambda}}^{(\text{penW})} \text{ vs. } \delta_{n,p_{\lambda}}: \ \text{Leave-one-out} \\ \hline \end{array} \\ \overline{\delta}_{n,\widehat{\rho}_{\lambda}}^{(\text{penW})} \text{ vs. } \delta_{n,p_{\lambda}}: \ begin{tabular}{c} & \text{Restrict} &$

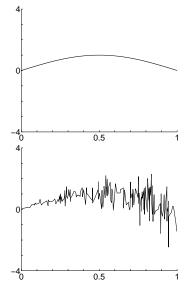


Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot



Sylvain Arlot



Mallows	3.69 ± 0.07
$\mathbb{E}[pen_{\mathrm{id}}]$	2.30 ± 0.05
pen Efr	3.15 ± 0.07
pen Loo	2.59 ± 0.06
pen Rho	2.50 ± 0.06
pen Rad	2.49 ± 0.06
Mallows $\times 1.25$	3.17 ± 0.07
$\mathbb{E}[pen_{\mathrm{id}}] imes 1.25$	2.03 ± 0.04
pen Efr $\times 1.25$	2.60 ± 0.06
pen Loo $ imes$ 1.25	2.22 ± 0.05
pen Rho $ imes$ 1.25	2.14 ± 0.05
pen Rad $\times 1.25$	2.14 ± 0.05

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Sylvain Arlot

Regressograms 0000000	Shape of the penalty	Resampling 00000000000	Regressograms & resampling	Density 000	Conclusion
Outline					

- Regressograms in heteroscedastic regression
- 2 The shape of the penalty must be estimated
- 3 Resampling
- 4 Theoretical guarantees for regressograms
- 5 Least-squares density estimation

6 Conclusion

Least-squares density estimation

- μ reference measure on Ξ
- $f = dP/d\mu \in \mathbb{S} = L^2(\mu)$

Density •00

Least-squares density estimation

- μ reference measure on Ξ
- $f = dP/d\mu \in \mathbb{S} = L^2(\mu)$

•
$$\gamma(t;\xi) = \|t\|_{L^{2}(\mu)}^{2} - 2t(\xi)$$

 $\Rightarrow P\gamma(t) = \|t\|_{L^{2}(\mu)}^{2} - 2\langle t, f \rangle_{L^{2}(\mu)}$
 $\Rightarrow s^{\star} = f \text{ and } \ell(s^{\star}, t) = \|t - s^{\star}\|_{L^{2}(\mu)}^{2}$

 Regressograms
 Shape of the penalty
 F

 0000000
 0000000000
 0

Regressograms & resampling

Density Concl

Least-squares density estimation

- μ reference measure on Ξ
- $f = dP/d\mu \in \mathbb{S} = L^2(\mu)$

•
$$\gamma(t;\xi) = \|t\|_{L^{2}(\mu)}^{2} - 2t(\xi)$$

 $\Rightarrow P\gamma(t) = \|t\|_{L^{2}(\mu)}^{2} - 2\langle t, f \rangle_{L^{2}(\mu)}$
 $\Rightarrow s^{\star} = f \text{ and } \ell(s^{\star}, t) = \|t - s^{\star}\|_{L^{2}(\mu)}^{2}$

• $(\psi_{\lambda})_{\lambda \in m}$ orthonormal basis of S_m $\Rightarrow s_m^* = \sum_{\lambda \in m} (P\psi_{\lambda})\psi_{\lambda}$ and $\widehat{s}_m = \sum_{\lambda \in m} (P_n\psi_{\lambda})\psi_{\lambda}$ Least-squares density estimation

Regressograms

- μ reference measure on Ξ
- $f = dP/d\mu \in \mathbb{S} = L^2(\mu)$

•
$$\gamma(t;\xi) = \|t\|_{L^{2}(\mu)}^{2} - 2t(\xi)$$

 $\Rightarrow P\gamma(t) = \|t\|_{L^{2}(\mu)}^{2} - 2\langle t, f \rangle_{L^{2}(\mu)}$
 $\Rightarrow s^{\star} = f \text{ and } \ell(s^{\star}, t) = \|t - s^{\star}\|_{L^{2}(\mu)}^{2}$

• $(\psi_{\lambda})_{\lambda \in m}$ orthonormal basis of S_m $\Rightarrow s_m^* = \sum_{\lambda \in m} (P\psi_{\lambda})\psi_{\lambda}$ and $\widehat{s}_m = \sum_{\lambda \in m} (P_n\psi_{\lambda})\psi_{\lambda}$

$$pen_{id}(m) = (P - P_n)\gamma(\widehat{s}_m) = 2(P_n - P)(\widehat{s}_m)$$
$$= 2 \|s_m^{\star} - \widehat{s}_m\|_{L^2(\mu)}^2 + 2(P_n - P)(s_m^{\star})$$

Regressograms & resampling

Density •00

Sylvain Arlot

Density Cond 0●0

I.i.d. framework (Lerasle 2009)

$$\operatorname{pen}_{\operatorname{id}}(m) = 2(P_n - P)(\widehat{s}_m)$$

$$\mathsf{pen}_W(m) = \mathcal{C}_W \mathbb{E}_W \left[2(P_n^W - \overline{W} P_n)(\widehat{s}_m^W)
ight]$$

54/57 Sylvain Arlot

Shape of the penalty 00000000000 Resampling

Regressograms & resampling

Density Cor

I.i.d. framework (Lerasle 2009)

$$\mathsf{pen}_W(m) = \mathcal{C}_W \mathbb{E}_W \left[2(\mathcal{P}_n^W - \overline{W}\mathcal{P}_n)(\widehat{s}_m^W)
ight]$$

 \Rightarrow pen_W(m) only depends on W through a multiplicative factor

54/57Sylvain Arlot

Model selection via penalization, resampling and cross-validation, with application to change-point detection

Shape of the penalty 00000000000 Resampling

Regressograms & resampling

Density Co

I.i.d. framework (Lerasle 2009)

$$\mathsf{pen}_W(m) = \mathcal{C}_W \mathbb{E}_W \left[2(\mathcal{P}_n^W - \overline{W}\mathcal{P}_n)(\widehat{s}_m^W)
ight]$$

 \Rightarrow pen_W(m) only depends on W through a multiplicative factor

- $\Rightarrow \mathbb{E}\left[\operatorname{pen}_{W}(m)\right] = C_{W}\operatorname{var}\left(W_{1} \overline{W}\right)\mathbb{E}\left[\operatorname{pen}_{\operatorname{id}}(m)\right]$
- + concentration of $pen_W(m)$ around its expectation (faster than $pen_{id}(m)$)

54/57Svlvain Arlot

Shape of the penalty 00000000000 Resampling

Regressograms & resampling

Density Cor

I.i.d. framework (Lerasle 2009)

$$\mathsf{pen}_W(m) = \mathcal{C}_W \mathbb{E}_W \left[2(\mathcal{P}_n^W - \overline{W}\mathcal{P}_n)(\widehat{s}_m^W)
ight]$$

 \Rightarrow pen_W(m) only depends on W through a multiplicative factor

- $\Rightarrow \mathbb{E}\left[\mathsf{pen}_W(m)\right] = C_W \operatorname{var}\left(W_1 \overline{W}\right) \mathbb{E}\left[\mathsf{pen}_{\operatorname{id}}(m)\right]$
- + concentration of $pen_W(m)$ around its expectation (faster than $pen_{id}(m)$)
- \Rightarrow oracle inequality with constant 1 + o(1) under well-chosen assumptions on P and \mathcal{M}_n

Sylvain Arlot

hape of the penalty

Resampling

Regressograms & resampling

Density Conc

Dependent case (Lerasle 2010)

- Mixing (β or τ)
- Split the data into several blocks \Rightarrow keep one every two blocks
- Resample the blocks (which are almost independent)
- \Rightarrow Oracle inequality (with an oracle only based on part of the original sample)

55/57 Svlvain Arlot

Regressograms 0000000	Shape of the penalty	Resampling 00000000000	Regressograms & resampling	Density 000	Conclusion
Outline					

- Regressograms in heteroscedastic regression
- 2 The shape of the penalty must be estimated
- 3 Resampling
- 4 Theoretical guarantees for regressograms
- 5 Least-squares density estimation

6 Conclusion

Limits of resampling

- Computational complexity
- \Rightarrow alternative: non-exchangeable weights (e.g., V-fold)
 - Non-asymptotic results: can we have some without closed-form expressions?

57 Svlvain Arlot