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Outline of the lectures

1 Model selection via penalization, with application to
change-point detection

2 Resampling methods for penalization, and robustness to
heteroscedasticity in regression

3 Cross-validation for model/estimator selection, with
application to detecting changes in the mean of a signal
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Learning Estimators Model selection Oracle inequality Change-point detection Conclusion

Part I

Model selection via penalization, with application
to change-point detection
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Outline

1 Learning

2 Estimators

3 Model selection

4 An oracle inequality for model selection: polynomial collection

5 Change-point detection via model selection

6 Conclusion
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Regression: data (x1,Y1), . . . , (xn,Yn)
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Goal: find the signal (denoising)
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General framework

Data: ξ1, . . . , ξn ∈ Ξ i.i.d. ∼ P

Goal: estimate a feature s? ∈ S of P

Quality measure: loss function

∀t ∈ S , LP ( t ) = Eξ∼P [γ(t; ξ) ] = Pγ(t)

minimal at t = s?

Contrast function: γ : S× Ξ 7→ [0,+∞)

Excess loss
` (s?, t ) = Pγ(t)− Pγ(s?)

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot
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Example: prediction

Data: (X1,Y1), . . . , (Xn,Yn) ∈ Ξ = X × Y

Goal: predict Y given X with (X ,Y ) = ξ ∼ P

s?(X ) is the “best predictor” of Y given X , i.e., s? minimizes
the loss function

Pγ(t) with γ(t; (x , y)) = d(t(x), y)

measuring some “distance” between y and the prediction t(x).

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot
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Example: regression

prediction with Y = R

Data: (X1,Y1), . . . , (Xn,Yn) i.i.d.

Yi = η(Xi ) + εi with E [εi | Xi ] = 0

least-squares contrast: γ(t; (x , y)) = (t(x)− y)2

⇒ s? = η and ` (s?, t ) = ‖t − η‖2
2 = E

[
( t(X )− η(X ))2

]
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Example: regression on a fixed design

(X1, . . . ,Xn) = (x1, . . . , xn) deterministic

Y = F + ε ∈ Rn with F = (η(x1), . . . , η(xn)) ∈ Rn

and ε1, . . . , εn centered and independent.

Homoscedastic case: ε1, . . . , εn i.i.d.

Quadratic loss of t ∈ S = Rn:

LP ( t ) = EY

[
1

n
‖Y − t‖2

]
= EY

[
1

n

n∑
i=1

(Yi − ti )2

]

⇒ s? = F and ` (s?, t ) =
1

n
‖F − t‖2 =

1

n

n∑
i=1

(η(xi )− ti )2
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Example: regression: fixed vs. random design

Random design Fixed design

Dn (Xi ,Yi )1≤i≤n i.i.d. ∼ P Y = F + ε ∈ Rn

(Xn+1,Yn+1) ∼ P Xn+1 ∼ U(x1, . . . , xn)

S t : X → R t ∈ Rn

Pγ(t) E(X ,Y )∼P

[
(Y − t(X ))2

]
EY

[
1
n ‖Y − t‖2

]
s? η : x → E [Y | X = x ] F = (η(x1), . . . , η(xn))

` (s?, t ) E(X ,Y )∼P

[
( t(X )− η(X ))2

]
1
n ‖F − t‖2

with ∀x ∈ Rn , ‖x‖2 =
n∑

i=1

x2
i
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Example: classification (prediction, X = R, Y = {0, 1})
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Example: classification (prediction, X = R, Y = {0, 1})
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Example: density estimation (Ξ = R): data and target
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Outline

1 Learning

2 Estimators

3 Model selection

4 An oracle inequality for model selection: polynomial collection

5 Change-point detection via model selection

6 Conclusion
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Estimators: example: regressogram
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Least-squares estimators

Natural idea: minimize an estimator of the risk 1
n ‖F − t‖2

Least-squares criterion:

1

n
‖t − Y ‖2 =

1

n

n∑
i=1

( ti − Yi )2

∀t ∈ S , E
[

1

n
‖t − Y ‖2

]
=

1

n
‖F − t‖2 +

1

n
E
[
‖ε‖2

]
Model: S ⊂ S ⇒ Least-squares estimator on S :

F̂S ∈ arg min
t∈S

{
1

n
‖t − Y ‖2

}
= arg min

t∈S

{
1

n

n∑
i=1

( ti − Yi )2

}
so that

F̂S = ΠS(Y ) (orthogonal projection)
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Model examples

histograms on some partition Λ of X
⇒ the least-squares estimator (regressogram) can be written

F̂Λ(xi ) =
∑
λ∈Λ

β̂λ1xi∈λ β̂λ =
1

Card {xi ∈ λ}
∑
xi∈λ

Yi

subspace generated by a subset of an orthogonal basis of
L2(µ) (Fourier, wavelets, and so on)

variable selection: xi =
(
x

(1)
i , . . . , x

(p)
i

)
∈ Rp gathers p

variables that can (linearly) explain Yi

∀m ⊂ {1, . . . , p} , Sm = vect
{
x (j) s.t. j ∈ m

}
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k-nearest-neighbours estimator (k = 20)
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Nadaraya-Watson estimator (σ = 0.01)
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Model selection: regular regressograms
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Model selection problem

Collection of candidate models: (Sm)m∈M

Problem: choosing among (F̂m)m∈M

with F̂m = F̂Sm = ΠSm(Y ) = Πm(Y ) .

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot
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Goal: estimation or prediction

Main goal: find m̂ minimizing 1
n

∥∥∥F − F̂m̂

∥∥∥2

Oracle: m? ∈ arg minm∈Mn

{
1
n

∥∥∥F − F̂m

∥∥∥2
}

Oracle inequality (in expectation or with high probability):

1

n

∥∥∥F − F̂m̂

∥∥∥2
≤ C inf

m∈Mn

{
1

n

∥∥∥F − F̂m

∥∥∥2
}

+ Rn

Non-asymptotic: all parameters can vary with n, in particular
the collection M =Mn

Adaptation (e.g., in the minimax sense) to the regularity of F ,
and so on (if (Sm)m∈Mn is well chosen)

Model selection via penalization, resampling and cross-validation, with application to change-point detection Sylvain Arlot
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Goal: identification

Additional assumption (model selection case): F ∈ Sm0 for
some m0 ∈Mn

Additional goal: select m̂ = m0 with a maximal probability

Consistency:
P (m̂ = m0 ) −−−→

n→∞
1

Estimation and identification (AIC-BIC dilemma)?
Contradictory goals in general (Yang, 2005)
Sometimes possible to share the strengths of both approaches
(e.g., Yang, 2005; van Erven et al., 2008)
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Decomposition of the risk

Y = F + ε with E
[
ε2
i

]
= σ2

F̂m = ΠmY with Πm = Π>m = Π2
m and tr(Πm) = dim(Sm) = Dm

⇒ Bias-variance decomposition of the risk

Fm := arg min
t∈Sm

{
1

n
‖F − t‖2

}
= ΠmF

E
[

1

n

∥∥∥F̂m − F
∥∥∥2
]

=
1

n
‖(Πm − I )F‖2 +

σ2Dm

n

= Bias + Variance
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Model selection: bias and variance

E
[

1

n

∥∥∥F − F̂m

∥∥∥2
]

= Bias + Variance

Bias or Approximation error

1

n
‖F − Fm‖2 := inf

t∈Sm

{
1

n
‖F − t‖2

}
Variance or Estimation error

σ2Dm

n

Bias-variance trade-off
⇒ avoid over-fitting and under-fitting
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Bias-variance trade-off
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Unbiased risk estimation principle

m̂ ∈ arg min
m∈Mn

{crit(m)}

critid(m) =
1

n

∥∥∥F − F̂m

∥∥∥2

Heuristics:

crit(m) ≈ E
[

1

n

∥∥∥F − F̂m

∥∥∥2
]

⇒ valid if Card(Mn) is not too large
(+ concentration inequalities)
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Why should the empirical risk be penalized?
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Penalization

Penalization: crit(m) = 1
n

∥∥∥F̂m − Y
∥∥∥2

+ pen(m)

m̂ ∈ arg min
m∈Mn

{
1

n

∥∥∥F̂m − Y
∥∥∥2

+ pen(m)

}

Ideal penalty:

penid(m) =
1

n

∥∥∥F − F̂m

∥∥∥2
− 1

n

∥∥∥F̂m − Y
∥∥∥2

Mallows’ heuristics:
pen(m) ≈ E [penid(m) ] ⇒ oracle inequality
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Computation of the ideal penalty and its expectation

Recall that
Y = F + ε with E

[
ε2
i

]
= σ2

F̂m = ΠmY with Πm = Π>m = Π2
m and tr(Πm) = Dm

E
[

1

n

∥∥∥F̂m − F
∥∥∥2
]

=
1

n
‖(Πm − I )F‖2 +

σ2Dm

n

⇒ Empirical risk? Ideal penalty? Expectations?

penid(m) =
2

n
〈Πmε, ε〉+

2

n
〈(Πm − In)F , ε〉

E [penid(m) ] =
2σ2Dm

n
⇒ Cp (Mallows, 1973)
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Classical penalties

Cp (Mallows, 1973; regression, least-squares estimator):

2σ2Dm/n

CL (Mallows, 1973; regression, linear estimator F̂m = AmY ):

2σ2 tr(Am)/n

AIC (Akaike, 1973; log-likelihood, p degrees of freedom):

2p/n

BIC (Schwarz, 1978; log-likelihood, identification goal):

ln(n)p/n
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Unbiased risk estimation principle

Heuristics:

E [ crit(m) ] ≈ E
[

1

n

∥∥∥F − F̂m

∥∥∥2
]
⇔ E [pen(m) ] ≈ E [penid(m) ]

Examples:

FPE (Akaike, 1970), SURE (Stein, 1981)

some kinds of cross-validation (e.g., leave-p-out, p � n)

log-likelihood: AIC (Akaike, 1973), AICc (Sugiura, 1978;
Hurvich & Tsai, 1989)

least-squares: Cp, CL (Mallows, 1973), GCV (Craven &
Wahba, 1979)

covariance penalties (Efron, 2004)

bootstrap penalty (Efron, 1983), resampling (A., 2009)

...
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Outline

1 Learning

2 Estimators

3 Model selection

4 An oracle inequality for model selection: polynomial collection

5 Change-point detection via model selection

6 Conclusion
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A key lemma

Lemma

Let pen :Mn 7→ R some penalty (possibly data-dependent).
On the event Ω on which for every m,m′ ∈Mn,

(pen(m)− penid(m))−
(

pen(m′)− penid(m′)
)

≤ A(m) + B(m′)

we have ∀m̂ ∈ arg min
m∈Mn

{
1

n

∥∥∥F̂m − Y
∥∥∥2

+ pen(m)

}
1

n

∥∥∥F̂m̂ − F
∥∥∥2
− B(m̂) ≤ inf

m∈Mn

{
1

n

∥∥∥F̂m − F
∥∥∥2

+ A(m)

}
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Oracle inequality for Gaussian regression (1)

Assumptions:

Fixed design regression, least-squares contrast

Gaussian homoscedastic noise: ε ∼ N (0, σ2)

Model collection of polynomial complexity: Card(Mn) ≤ Cnα

For all m ∈Mn, F̂m = ΠmY (least-squares estimator)

Penalty

pen(m) =
Kσ2Dm

n
with K > 1
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Oracle inequality for Gaussian regression (2)

−B(m) ≤ pen(m)− penid(m) ≤ A(m)

⇒ 1

n

∥∥∥F̂m̂ − F
∥∥∥2
− B(m̂) ≤ inf

m∈Mn

{
1

n

∥∥∥F̂m − F
∥∥∥2

+ A(m)

}

penid(m) =
2

n
〈Πmε, ε〉+

2

n
〈(Πm − In)F , ε〉

First term has expectation 2σ2Dm
n , the second term is centered.
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Oracle inequality for Gaussian regression (3)

Two Gaussian concentration results (see Massart 2007):

Proposition

Let ξ be some standard Gaussian vector in Rn , α ∈ Rn,
M ∈Mn(R). Then, for every x ≥ 0 ,

P
(
|〈ξ, α〉| ≤

√
2x ‖α‖2

)
≥ 1− 2e−x

P
(
|〈ξ, Mξ〉 − tr(M)| ≤ 2

√
x tr (M>M ) + 2 |||M||| x

)
≥ 1− 2e−x
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Oracle inequality for Gaussian regression (4)

Sketch of the proof:

For all m ∈Mn,
concentrate 〈Πmε, ε〉 around σ2Dm

and 〈(Πm − In)F , ε〉 around 0

Apply the Lemma on the intersection of these Card(Mn)
events

Control the remainder terms
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42/56

Learning Estimators Model selection Oracle inequality Change-point detection Conclusion

Oracle inequality for Gaussian regression (5)

Theorem (Birgé & Massart, 2001–2007)

For every x ≥ 0, with probability at least 1− 4 Card(Mn)e−x , for
every

m̂ ∈ arg min
m∈Mn

{
1

n

∥∥∥Y − F̂m

∥∥∥2
+

Kσ2Dm

n

}
,

we get the oracle inequality ∀δ > 0,

1

n

∥∥∥F̂m̂ − F
∥∥∥2
≤
(

1 + (K − 2)+

1− (2− K )+
+ δ

)
inf

m∈Mn

{
1

n

∥∥∥F̂m − F
∥∥∥2
}

+
C (K )xσ2

δn
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Change-point detection: data
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Change-point detection: target function
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Change-point detection and model selection

Yi = η(ti ) + εi with E [εi ] = 0 E
[
ε2
i

]
= σ2 > 0

Goal: detect the change-points of the mean η of the signal Y

⇒ Model selection, collection of regressograms with
Mn = Pinterv({ t1, . . . , tn }) (partitions into intervals)

with Fi = η(ti )
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The previous oracle inequality is not sufficient

Problem : Card(Mn) = 2n−1

Theorem (Birgé & Massart, 2001–2007)

For every x ≥ 0, with probability at least 1− 4 Card(Mn)e−x , for
every

m̂ ∈ arg min
m∈Mn

{
1

n

∥∥∥Y − F̂m

∥∥∥2
+

Kσ2Dm

n

}
,

we get the oracle inequality ∀δ > 0,

1

n

∥∥∥F̂m̂ − F
∥∥∥2
≤
(

1 + (K − 2)+

1− (2− K )+
+ δ

)
inf

m∈Mn

{
1

n

∥∥∥F̂m − F
∥∥∥2
}

+
C (K )xσ2

δn
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A general oracle inequality

Theorem (Birgé & Massart, 2001)

Let K > 1 and (Lm)m∈Mn be nonnegative weights such that∑
m∈Mn

e−LmDm = Σ < +∞. For every

m̂ ∈ arg min
m∈Mn

{
1

n

∥∥∥Y − F̂m

∥∥∥2
+

Kσ2Dm

n

(
1 +

√
2Lm

)2
}

,

we get the oracle inequality

E
[

1

n

∥∥∥F − F̂m̂

∥∥∥2
]
≤ C (K ) inf

m∈Mn

{
1

n
‖F − Fm‖2 + pen(m)

}
+
C ′(K )Σσ2

n
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Weights for change-point detection

If Lm = L(Dm),

∑
m∈Mn

e−LmDm =
∑
D≥1

Card {m ∈Mn s.t. Dm = D } e−DL(D)

=
∑
D≥1

exp [−DL(D) + ln Card {m ∈Mn s.t. Dm = D } ]

is finite by taking (for instance)

L(D) = ln (Card {m ∈Mn s.t. Dm = D }) +αD with α > 0 ,

and for change-point detection

ln (Card {m ∈Mn s.t. Dm = D }) = ln

(
n − 1

D − 1

)
≤ D ln

( en
D

)
.
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Resulting penalty

Birgé-Massart theory + simulation experiments for optimizing
the constants (Lebarbier, 2005):

m̂ ∈ argminm∈Mn

{
1

n

∥∥∥F̂m − Y
∥∥∥2

+
Cσ2Dm

n

(
5 + 2 ln

(
n

Dm

))}

Equivalent to aggregating models of the same dimension:

S̃D :=
⋃

m∈Mn ,Dm=D

Sm

F̂D ∈ argmin
t∈S̃D

{
1

n
‖t − Y ‖2

}
D̂ ∈ argmin1≤D≤n

{
1

n

∥∥∥F̂D − Y
∥∥∥2

+
Cσ2D

n

(
5 + 2 ln

( n

D

))}
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Computational complexity

Dynamic programming algorithm (Bellman & Dreyfus, 1962)

Key remark: F̂D = F̂m̂(D) with

m̂(D) ∈ argmin
m∈Mn ,Dm=D

{ ∑
λ∈m

f (λ)

}
with f (λ) = var

(
(Yi )i∈λ

)

Algorithm:
1 Compute f (λ) for all possible λ (n(n + 1)/2 possible

segments):
2 For 1 ≤ i ≤ k ≤ n, let m̂k(i) be a minimizer of the empirical

risk over segmentations of {1, . . . , k } into i segments, and
Rk(i) the corresponding empirical risk.
Then, { m̂k(1), . . . , m̂k(k)} and {Rk(1), . . . ,Rk(k)} can be
computed sequentially from k = 1 to k = n.

⇒ complexity O(n2)

Remark: can be done faster with pruning (Rigaill, 2011)
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Illustration: empirical risk minimizer with D = 4
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Illustration: estimate of the loss as a function of D
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(Some) other model selection approaches

penalization:

Baraud, Giraud & Huet 2009: multiplicative penalty, Gaussian
noise
Zhang & Siegmund, 2007: modified BIC
see also Lavielle, 2005

cross-validation (third lecture; A. & Celisse, 2010)

Picard et al., 2005: penalized maximum likelihood, looks for
change-points of (η, σ), assuming a Gaussian model
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Conclusion

bias-variance trade-off for model selection (overfitting vs.
underfitting)

model selection via penalization: E [penid(m) ] leads to an
oracle inequality for polynomial collection of models

possible extension to exponential collections, with larger
penalties
example: change-point detection

related problem: data-driven calibration of constants in the
penalty (σ2): slope heuristics

http://www.di.ens.fr/~arlot/2012cergy.htm
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