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Outline of the 5 lectures

@ Statistical learning

@ Model selection for least-squares regression

© Linear estimator selection for least-squares regression
@ Resampling and model selection

@ Cross-validation and model/estimator selection
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Part |l

Model selection for least-squares regression
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Outline

@ An oracle inequality for model selection

e The penalty calibration problem

© Slope heuristics in homoscedastic regression
@ The slope heuristics

© Practical issues

@ Conclusion
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Oracle inequality

Outline

@ An oracle inequality for model selection
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Oracle inequality
@®00000

A key lemma

Lemma

Let pen : M, — R some penalty (possibly data-dependent).
On the event Q on which for every m,m’ € M,

(pen(m) — pena(m, Dy)) — (pen(m') — penq(m’, Dy))
< A(m) + B(m')

1|~ 2
we have Vm € arg min { HFm — YH + pen(m)}
n

meM,
1~ 2 111~ 2
f‘FﬁquH _B(@) < inf {HFmFH +A(m)}
n meM, n
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Oracle inequality
0e0000

Oracle inequality for Gaussian regression (1)

Assumptions:
o Fixed design regression, least-squares contrast
@ Gaussian homoscedastic noise: € ~ N(0, 0?)
@ Model collection of polynomial complexity: Card(M,) < Cn®
o

For all me M,, It_m =AnY =15, Y (least-squares
estimator)

Penalty

_ Ko?dim(Sp)

n

pen(m) with K >1
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Oracle inequality
[o]e] lele]e]

Oracle inequality for Gaussian regression (2)

—B(m) < pen(m) — peniq(m, Dy) < A(m)

1= 2 1= 2
S L G ER R ]  EC)

2 2
peniq(m, Dp) = N (Ame, €) + n (Am — In)F, €)

- .
%:‘(5’"), the second term is centered.

First term has expectation
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Oracle inequality
[e]e]e] le]e]

Oracle inequality for Gaussian regression (3)

Two Gaussian concentration results (see Massart 2007):

Proposition

Let & be some standard Gaussian vector in R", o € R",
M € Mp(R). Then, for every x > 0,

P (1(6, o)l < V2x|all,) 2 1 - 2¢™

P <|(§, M¢E) — tr(M)| < 24/xtr(MTM) +2|||MH|X> >1-2e"

v
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Oracle inequality
0000e0

Oracle inequality for Gaussian regression (4)

Sketch of the proof:

e Forall me M,,
concentrate (Ame, €) around o2 dim(S,,)
and ((Am — In)F, €) around 0

@ Apply the Lemma on the intersection of these Card(M,)
events

@ Control the remainder terms
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Oracle inequality
00000e

Oracle inequality for Gaussian regression (5)

Theorem (Birgé & Massart 2007)

For every x > 0, with probability at least 1 — 4 Card(M ,)e™*, for
every

~ . 1 ~ 12 Ko?dim(S
mews,mp {5 Bl + F=TEE

we get the oracle inequality ¥§ > 0,

~ 2 — ~ 2
llFﬁ_FH < M_,_(g inf 1 Fm_FH
n 1-(2-K)+ meM, ( n

C(K)xa?
N (K)xo
on
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Penalty calibration

Outline

e The penalty calibration problem
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Penalty calibration
@000

Motivation (1): L-curve and elbow heuristics?

1.5(] 1

empirical error
|_\

0.5¢ ,
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dimension
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Penalty calibration
[o] le]e}

Motivation (1): L-curve and elbow heuristics?

15

empirical / generalization error
|_\

1 =" -
. -
0.5n ="

1 P -~
\ Lo
v .-

0 L L L L

0 200 400 600 800 1000
dimension
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Penalty calibration
[e]e] le}

Motivation (2): what if K < 17

Theorem (Birgé & Massart 2007)

If K > 1, for every x > 0, with probability 1 — 4 Card(M,)e™, for
every

- . 1 ~ 12 Ko2dim(S
mearg mip {2y R+ KZAER L

we get the concentration inequality Y6 > 0,

~ 2 — ~ 2
1’F,,q—FH <(LHK=2r  5) g {1 Fr— |
n 1-(2-K)+ meM, ( n

C(K)xo?
I
on
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Penalty calibration
[e]ele] }

Motivation (3): penalty calibration

e C, and C; (Mallows, 1973):

20°Dpy
pen(m) = ?
202 tr(Am
pen(m) = 207 tr(An)
n

@ Penalties proportional to D, with the optimal multiplying
factor unknown: change-point detection (Birgé & Massart,
2001; Lebarbier, 2005), mixture models (Maugis & Michel,

2008), and so on
D,,}
° ..

@ Rademacher penalties
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Penalty calibration
000

Naive estimator of o2

Example: homoscedastic regression on a fixed design
Computation of the empirical risk
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Penalty calibration
000

Naive estimator of o2

Example: homoscedastic regression on a fixed design

1 ~ 2 1 o?(n— D,
E [ HY— FmH } = Ly = AR 4+ 27 = Dm)
n n n

Naive estimator of o2:

_ 1 SR
T = o |Y = P

Bias of this estimator:

. 1
E[o7] =0+ —5— [l — Am)F]’

m D,
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Penalty calibration
000

Naive estimator of o2

Example: homoscedastic regression on a fixed design

1 ~ 2 1 o?(n — Dn,
E [ |y =7l } = Ly = AR 4+ 27 = Dm)
n n n

Naive estimator of o2:

1 2
~2
= ||y - R
Tm n—D,,,H m

Bias of this estimator:

—~ 1
E[05] =0+ —5— |l — Am)F|?

m
D,
= Using it inside the penalty 20°D,/n?
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Penalty calibration
000

Naive estimator of o2

Naive estimator of o2:

~ 1 =2
7= = |

Bias of this estimator:
~ 1 2
E[on] =0+ —F- 5 1Un = Am)F]
= Using it inside the penalty 202D, /n?
First idea: )
1 ~ 12 20, D
crit(m) = fHY—FmH + == 7
n n
Drawbacks: we have to know/choose myg, overpenalization by an

unknown factor
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Penalty calibration
(o] 1o

FPE (Akaike, 1970) and GCV (Craven & Wahba, 1979)

262 Dy

n

. 1 ~ 12 1
citrpn(m) = || — Fa+ =

(Akaike, 1970; see also Baraud, Giraud & Huet, 2009)
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Penalty calibration
(o] 1o

FPE (Akaike, 1970) and GCV (Craven & Wahba, 1979)

~ 2 2D
Y - F <1+n . )
- m

n n

1
critFpE(m) = ; HY —

(Akaike, 1970; see also Baraud, Giraud & Huet, 2009)

Generalized cross-validation (GCV, Craven & Wahba, 1979)

critaev(m) = 1H(Y ;:nm)
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Penalty calibration
(o] 1o

FPE (Akaike, 1970) and GCV (Craven & Wahba, 1979)

267,Dm 1
n - n

. 1 o P
crltFpE(m) = ; HY — FmH +

(Akaike, 1970; see also Baraud, Giraud & Huet, 2009)

Generalized cross-validation (GCV, Craven & Wahba, 1979)

critaev(m) = 1H(Y ;:nm)

If D, < n,

. 1 ~ 12n+ D

t ~ |y - H -
critcov(m) ~ H "l 'n=Dn
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Penalty calibration
(o] 1o

FPE (Akaike, 1970) and GCV (Craven & Wahba, 1979)

267,Dm 1
n - n

1 2
critFpE(m) = ; HY — FmH +
(Akaike, 1970; see also Baraud, Giraud & Huet, 2009)

Generalized cross-validation (GCV, Craven & Wahba, 1979)

1y -Fal H
critgov(m) = 5
n(1-La)?
If D, < n,
1 2n+ D, 2D,
taovim) = ||~ Fo Sy =Ff(n
critcov(m) n H n— Dm + n— Dp,

Drawbacks: for the largest models H Y — F%H ~0
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Penalty calibration
ooe

E[||Y — Fol?] = no® + |F = Ful> X Dn

1.5F 1

E[empirical error + 0* pen min]

0 1 1 1 1
0 200 400 600 800 1000

dimension
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Slope heuristics for OLS

Outline

© Slope heuristics in homoscedastic regression
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Slope heuristics for OLS
@000

Minimal penalty: heuristics

For all C > 0,

m(C) € arg min {IHY_?mH2—|— CDm}

mEMn n

= FCpin S.t.: for C < Cuin, ’?ﬁy(c) overfits
for C > Cpin, oracle-inequality for I?,?,(C)?
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Slope heuristics for OLS
@000

Minimal penalty: heuristics

For all C > 0,

mEMn n

m(C) € arg min {IHY_?mH2—|— CDm}

= E|Cmin s.t.: for C < Cminy /I':ﬁ,(c) overfits
for C > Cpuin, oracle-inequality for l?ﬁ,(c)?

n
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Slope heuristics for OLS
[o] le]e}

E[n || Y — Fnl?] + Dy

E[empirical error + 0* pen min]

0 1 1 1 1
0 200 400 600 800 1000

dimension
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Slope heuristics for OLS
[o] le]e}

E[n || Y — Fnl?] + Dy

=
P (3

E[empirical error + 0.8* pen min]
o
o1

0 1 1 1 1 ~
0 200 400 600 800 1000

dimension
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Slope heuristics for OLS
[o] le]e}

E[n || Y — Fnl?] + Dy

=
[

E[empirical error + 0.9* pen min]

1 i
0.5 1
0 I I I I BRIN
0 200 400 600 800 1000

dimension
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Slope heuristics for OLS
[o] le]e}

E[n || Y — Fnl?] + Dy

=
(3

E[empirical error + 1.1* pen min]

1 -
0.5 1
0 | | | | T~
0 200 400 600 800 1000
dimension
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Slope heuristics for OLS
[o] le]e}

E[n || Y — Fnl?] + Dy

=
[

[

E[empirical error + 1.2* pen min]
o
o1

0 1 1 1 1 ~
0 200 400 600 800 1000

dimension
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Slope heuristics for OLS
[o] le]e}

E[n || Y — Fnl?] + Dy

=
P (3

E[empirical error + 2* pen min]
o
a1

0 1 1 ~
0 200 400 600 800 1000

dimension
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Slope heuristics for OLS
[e]e] T}

Dimension jump

1000

600r 1

400 1

dimension of m(C)

00 1 2 3 4 5

: 2
C/sigma
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Slope heuristics for OLS
[e]ele] ]

Calibration of penalties (Birgé & Massart 2007)

@ for all C > 0, compute

N . 1 ~ 2 D
m(C)Gargmrgjl\rJl {n Y—FmH —|—C:}

@ find Cpmin such that Dz (cy is “too large” when
C< /Cmin and “reasonably small” when C > an;n

Q select m=m <2€min>
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Slope heuristics for OLS
[ ele}

Proof: assumptions and concentration inequalities

Assumptions:
@ polynomial complexity: Card(M,) < Cpn®
@ homoscedastic Gaussian noise, fixed design

e dmy, my € My st. Dy, > n/2, Dy, < /nand Vi€ {1,2},
n~YF — Fy, || < 02y/In(n)/n

IfE~N(0, 1), « € R", M € Mp(R), for all x >0,

P (1(6, o)l < Vax|lall,) 2 1 - 2¢™

P (\(5, ME) — tr(M)] < 2¢/xtr (MTM) + 2 m/vimx) >1-2e*

4
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Slope heuristics for OLS
(o] lo}

Theorem (1): Minimal penalty / Dimension jump

Theorem (Birgé & Massart 2007, A. & Bach 2009)
With probability at least 1 — 4Caqn2, si n > no(c),

a-+2)In(n n
VC<<1—42 ()()>O'2./ Dﬁv(C)Zg

n

a-+2)In(n
vC > (1—5—8(,71/‘1)()) o?,  Dacy<n/*

and in the first case,
~ 2 12
HF — Fm(c)‘ > In(n) infmem, { HF _ FmH }
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Slope heuristics for OLS
ooe

Theorem (2): Oracle inequality

Theorem (Birgé & Massart 2007)

For every x > 0, with probability 1 — 4 Card(M )e™*, for every
K >1,6 >0, and every

1 ~ 12 Kdg2di -
(ko) arg i { 1| - B[+ KSR

meM, | n n
1~ 2 1+ (K—-2), . 1= z
_ . _ < | —) /7 it _
nHFm(Ka2) FH —<1—(2—K)++5 L nHF’” FH
, Gk
on

o
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Slope heuristics for OLS
ooe

Theorem (2): Oracle inequality

Theorem (Birgé & Massart 2007)
IFP(2C € [(1 —1-)202, (1 +14)202]) > 1 — 4Cpqn2

For every x > 0, with probability 1 — 4 Card(M,)e™™ — 4Cpn~2,
for every § > 0, and every

rAn<2E>Earg min {,::HY—I?,,,HZ—FW} ,

meM, n
2 1+n4 : 1= 2
ol -]
m(2C) <1 — - N 5) mlen/f/(,,{ n Fm —F
L max{C2—7), C2 + )} xo?
on

v
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Slope heuristics for OLS
ooe

Theorem (2): Oracle inequality

Theorem (Birgé & Massart 2007)
We take x = (ac+ 2) In(n) and assume n > ng(«).

With probability 1 — 4Cpqn—2, for every

m(22) o gy, {2y -l + 222 |

meM, n
1= 2 Lor/In(n) _ 1= 2
L Pyl < 1+ 2 ) o, {2}
Lo In(n)o?
on

v
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Slope heuristics

Outline

@ The slope heuristics
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Slope heuristics
[ Jelele]ele)

The slope heuristics (Birgé & Massart, 2007)

@ existence of a minimal penalty pen;,(m):

Mmin(C) € arg min { Py (3m) + Cpenpin(m)}

(5%, S5n(C))
infmert, {€(s*,5m)}

jumpsat C =1
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Slope heuristics
[ Jelele]ele)

The slope heuristics (Birgé & Massart, 2007)

m):

@ existence of a minimal penalty pen;,(

Mmin(C) € arg min { Py (3m) + Cpenpin(m)}

(5%, S5n(C))
infmert, {€(s*,5m)}

jumpsat C =1

@ the minimal penalty can be detected:
Chimn(C) “Jumps” around C =1
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Slope heuristics
[ Jelele]ele)

The slope heuristics (Birgé & Massart, 2007)

m):

@ existence of a minimal penalty pen;,(

Mmin(C) € arg min { Py (3m) + Cpenpin(m)}

(5%, S5n(C))
infmert, {€(s*,5m)}

jumpsat C =1

@ the minimal penalty can be detected:
Chimn(C) “Jumps” around C =1
© link between minimal and optimal penalty:
pen

opt (M) = 2 pen i (m)
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Slope heuristics
[e] lelelele)

Data-driven penalties with the slope heuristics

Inputs:  (peng(m))mert,  (Cm)mem,

Assumption:  peng(m) o pen,i,(m)

@ for every C > 0, compute

m(C) € arg min { Py (Sm) + Cpeng(m)}

@ find Cpin such that Ca(c) is “too large” when
C< /Cmin and “reasonably small” when C > Em;n

Q select m=m <2€min>.
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Slope heuristics
[e]e] lelele)

Slope heuristics recipe

pa(m) = Po(v(sp) =7 (Sm))  penmia(m) = E[p2(m)]
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Slope heuristics
[e]e] lelele)

Slope heuristics recipe

pa(m) = Po(v(sp) =7 (Sm))  penmia(m) = E[p2(m)]

pi(m) = P(y(5m) =7 (sm))  0(m) =(P—Pa)y(sp)

peng(m) = pi1(m) + pa(m) — 6(m)
E [peniq(m)] = pengy(m) = E[pi(m)] + E[pa(m)]
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Slope heuristics
[e]e] lelele)

Slope heuristics recipe

pa(m) = Po(v(s;) =7(5m))  penmin(m) = E[p2(m)]

6(m) = (P = Pa)y(spy)

peng(m) = pi1(m) + pa(m) — 6(m)
E [penig(m)] = pengp(m) = E [p1(m)] + E [p2(m)]

Heuristics: p1(m) =~ pa(m)
@ concentration of p1, p2, ¢
° E[pi(m)] =~ E[pa(m)]

@ increase of the expectation for compensating the bias
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Slope heuristics
[e]e]e] lele)

Known results

Least-squares, regression, homoscedastic Gaussian noise
(Birgé & Massart, 2007)

Heteroscedastic regressograms (A. & Massart, 2009)

Least-squares density estimation, i.i.d. (Lerasle, 2009) or
mixing data (Lerasle, 2010)

@ Minimum contrast estimators, regular contrast (Saumard,
2010)
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Slope heuristics
[e]e]e]e] o)

Minimizer of a regular contrast (Saumard, 2010)

@ Regular contrast on some convex model S,;:
o sy € argmingcs, Py(t) exists
o t €S, — Py(t) strictly convex
o 3c >0, t € Boo(sh, ) — (t;+) € Loo(P) is C3

e Concentration of pi(m) and pa(m) around the same
deterministic quantity D,,K2,/(4n) (unobservable in general)
+ control of |[S, — sh |l
= validates the slope heuristics for:
o heteroscedastic regression (histograms, piecewise polynomials)

o least-squares density estimation
o log-likelihood density estimation on histograms
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Slope heuristics
00000e

Experimental results

e Change-point detection (Lebarbier, 2005)
e Gaussian mixture models (Maugis & Michel, 2008)

@ Unsupervised classification (choice of the number of clusters)
(Baudry, 2009)

e Computational geometry (Caillerie & Michel, 2009)
@ Lasso (Connault, 2011)

for a complete list, see Baudry, Maugis & Michel, 2010
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Practical issues

Outline

e Practical issues
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Practical issues
@000

Practical qualities of the algorithm

@ visual checking of existence of a jump

@ calibration independent from the choice of some mg

@ too strong overfitting almost impossible

@ one remaining parameter: how to localize the jump
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Practical issues
[o] le]e}

How to localize the jump in practice?

o Complexity jump: largest jump? largest relative jump?
complexity threshold?
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http://www.math.univ-toulouse.fr/~maugis/CAPUSHE.html

Practical issues
[o] le]e}

How to localize the jump in practice?

o Complexity jump: largest jump? largest relative jump?
complexity threshold?

@ Estimation of the slope of the empirical risk as a function of
the complexity:
computed with which models? robust regression?
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Practical issues
[o] le]e}

How to localize the jump in practice?

o Complexity jump: largest jump? largest relative jump?
complexity threshold?

@ Estimation of the slope of the empirical risk as a function of
the complexity:
computed with which models? robust regression?

@ Jump vs. slope? Take both!
= package CAPUSHE (Baudry, Maugis & Michel, 2010)
http://www.math.univ-toulouse.fr/~maugis/CAPUSHE.html
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Practical issues
ooe

CAPUSHE (Baudry, Maugis & Michel, 2010): slope
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Practical issues
[e]ele] ]

CAPUSHE (Baudry, Maugis & Michel, 2010): jump

e
o] —Maximal Jump Method
ozssocin|- — ;

| D o e e Rt e ca ot
! e e it
I
| Saiececieaat oy 0108
i
o ! Theshold Cormplexity Method
[0 esssconen

3 ot -

£ s ean— -

2 b1as g0 —

€ 0124 g2y |- —

&

&
oits g0
oion g0
.

0058 K1) Il Il L
e ey

Sylvain Arlot



Conclusion

Outline

@ Conclusion
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Conclusion
[ ]
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