Model selection and estimator selection for statistical learning

Sylvain Arlot

 1 CNRS

²École Normale Supérieure (Paris), LIENS, Équipe SIERRA

Scuola Normale Superiore di Pisa, 14-23 February 2011

Outline of the 5 lectures

- Statistical learning
- Model selection for least-squares regression
- Selection Linear estimator selection for least-squares regression
- Resampling and model selection
- Oross-validation and model/estimator selection

Model selection for least-squares regression

Outline

- An oracle inequality for model selection
- 2 The penalty calibration problem
- 3 Slope heuristics in homoscedastic regression
- The slope heuristics
- Practical issues
- 6 Conclusion

- An oracle inequality for model selection

A key lemma

Oracle inequality

Lemma

Let pen : $\mathcal{M}_n \mapsto \mathbb{R}$ some penalty (possibly data-dependent). On the event Ω on which for every $m, m' \in \mathcal{M}_n$,

$$(\operatorname{\mathsf{pen}}(m) - \operatorname{\mathsf{pen}}_{\operatorname{id}}(m, D_n)) - (\operatorname{\mathsf{pen}}(m') - \operatorname{\mathsf{pen}}_{\operatorname{id}}(m', D_n))$$

 $\leq A(m) + B(m')$

we have
$$\forall \widehat{m} \in \arg\min_{m \in \mathcal{M}_n} \left\{ \frac{1}{n} \left\| \widehat{F}_m - Y \right\|^2 + \operatorname{pen}(m) \right\}$$

$$\frac{1}{n} \left\| \widehat{F}_{\widehat{m}} - F \right\|^2 - B(\widehat{m}) \leq \inf_{m \in \mathcal{M}_n} \left\{ \frac{1}{n} \left\| \widehat{F}_m - F \right\|^2 + A(m) \right\}$$

Oracle inequality for Gaussian regression (1)

Assumptions:

- Fixed design regression, least-squares contrast
- Gaussian homoscedastic noise: $\varepsilon \sim \mathcal{N}(0, \sigma^2)$
- Model collection of polynomial complexity: $Card(\mathcal{M}_n) \leq Cn^{\alpha}$
- For all $m \in \mathcal{M}_n$, $\widehat{F}_m = A_m Y = \prod_{S_m} Y$ (least-squares estimator)
- Penalty

$$pen(m) = \frac{K\sigma^2 \dim(S_m)}{n}$$
 with $K > 1$

Oracle inequality

Oracle inequality for Gaussian regression (2)

$$-B(m) \le \operatorname{pen}(m) - \operatorname{pen}_{\operatorname{id}}(m, D_n) \le A(m)$$

$$\Rightarrow \frac{1}{n} \left\| \widehat{F}_{\widehat{m}} - F \right\|^2 - B(\widehat{m}) \le \inf_{m \in \mathcal{M}_n} \left\{ \frac{1}{n} \left\| \widehat{F}_m - F \right\|^2 + A(m) \right\}$$

$$pen_{id}(m, D_n) = \frac{2}{n} \langle A_m \varepsilon, \varepsilon \rangle + \frac{2}{n} \langle (A_m - I_n) F, \varepsilon \rangle$$

First term has expectation $\frac{2\sigma^2 \dim(S_m)}{n}$, the second term is centered.

Oracle inequality for Gaussian regression (3)

Two Gaussian concentration results (see Massart 2007):

Proposition

Oracle inequality

Let ξ be some standard Gaussian vector in \mathbb{R}^n , $\alpha \in \mathbb{R}^n$, $M \in \mathcal{M}_n(\mathbb{R})$. Then, for every x > 0,

$$\mathbb{P}\left(\left|\left\langle \xi,\,\alpha\right\rangle\right| \leq \sqrt{2x}\left\|\alpha\right\|_{2}\right) \geq 1 - 2e^{-x}$$

$$\mathbb{P}\left(\left|\left\langle \xi,\, M\xi\right\rangle - \mathsf{tr}(\textit{M})\right| \leq 2\sqrt{x\,\mathsf{tr}\left(\textit{M}^{\top}\textit{M}\right)} + 2\, |\!|\!|\textit{M}|\!|\!|\, x\,\right) \geq 1 - 2e^{-x}$$

Oracle inequality for Gaussian regression (4)

Sketch of the proof:

Oracle inequality 000000

- For all $m \in \mathcal{M}_n$. concentrate $\langle A_m \varepsilon, \varepsilon \rangle$ around $\sigma^2 \dim(S_m)$ and $\langle (A_m - I_n)F, \varepsilon \rangle$ around 0
- Apply the Lemma on the intersection of these Card (\mathcal{M}_n) events
- Control the remainder terms

Oracle inequality

Oracle inequality for Gaussian regression (5)

Theorem (Birgé & Massart 2007)

For every $x \ge 0$, with probability at least $1 - 4 \operatorname{Card}(\mathcal{M}_n) e^{-x}$, for every

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}_n} \left\{ \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 + \frac{K\sigma^2 \dim(S_m)}{n} \right\} ,$$

we get the oracle inequality $\forall \delta > 0$,

$$\frac{1}{n} \left\| \widehat{F}_{\widehat{m}} - F \right\|^2 \le \left(\frac{1 + (K - 2)_+}{1 - (2 - K)_+} + \delta \right) \inf_{m \in \mathcal{M}_n} \left\{ \frac{1}{n} \left\| \widehat{F}_m - F \right\|^2 \right\} + \frac{C(K) \times \sigma^2}{\delta n}$$

Outline

- An oracle inequality for model selection
- 2 The penalty calibration problem

Motivation (1): L-curve and elbow heuristics?

Motivation (2): what if $K \leq 1$?

Theorem (Birgé & Massart 2007)

If K > 1, for every $x \ge 0$, with probability $1 - 4 \operatorname{Card}(\mathcal{M}_n) e^{-x}$, for every

$$\widehat{m} \in \arg\min_{m \in \mathcal{M}_n} \left\{ \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 + \frac{K\sigma^2 \dim(S_m)}{n} \right\} ,$$

we get the concentration inequality $\forall \delta > 0$,

$$\frac{1}{n} \left\| \widehat{F}_{\widehat{m}} - F \right\|^2 \le \left(\frac{1 + (K - 2)_+}{1 - (2 - K)_+} + \delta \right) \inf_{m \in \mathcal{M}_n} \left\{ \frac{1}{n} \left\| \widehat{F}_m - F \right\|^2 \right\} + \frac{C(K) x \sigma^2}{\delta n}$$

Motivation (3): penalty calibration

• C_p and C_L (Mallows, 1973):

$$pen(m) = \frac{2\sigma^2 D_m}{n}$$

$$pen(m) = \frac{2\sigma^2 tr(A_m)}{n}$$

- Penalties proportional to D_m with the optimal multiplying factor unknown: change-point detection (Birgé & Massart, 2001; Lebarbier, 2005), mixture models (Maugis & Michel, 2008), and so on
- Rademacher penalties

$$pen(m) = 2 \times \mathbb{E} \left[\sup_{t \in S_m} \left\{ \frac{1}{n} \sum_{i=1}^n (\varepsilon_i \gamma(t; \xi_i)) \middle| D_n \right\} \right]$$

...

Naive estimator of σ^2

Example: homoscedastic regression on a fixed design Computation of the empirical risk

Naive estimator of σ^{2}

Example: homoscedastic regression on a fixed design

$$\mathbb{E}\left[\frac{1}{n}\left\|Y-\widehat{F}_{m}\right\|^{2}\right] = \frac{1}{n}\left\|(I_{n}-A_{m})F\right\|^{2} + \frac{\sigma^{2}(n-D_{m})}{n}$$

Naive estimator of σ^2 :

$$\widehat{\sigma}_m^2 := \frac{1}{n - D_m} \left\| Y - \widehat{F}_m \right\|^2$$

Bias of this estimator:

$$\mathbb{E}\left[\widehat{\sigma}_{m}^{2}\right] = \sigma^{2} + \frac{1}{n - D_{m}} \left\| (I_{n} - A_{m})F \right\|^{2}$$

Naive estimator of σ^2

Example: homoscedastic regression on a fixed design

$$\mathbb{E}\left[\frac{1}{n}\left\|Y-\widehat{F}_{m}\right\|^{2}\right]=\frac{1}{n}\left\|(I_{n}-A_{m})F\right\|^{2}+\frac{\sigma^{2}(n-D_{m})}{n}$$

Naive estimator of σ^2 :

$$\widehat{\sigma}_m^2 := \frac{1}{n - D_m} \left\| Y - \widehat{F}_m \right\|^2$$

Bias of this estimator:

$$\mathbb{E}\left[\widehat{\sigma}_{m}^{2}\right] = \sigma^{2} + \frac{1}{n - D_{m}} \left\| (I_{n} - A_{m})F \right\|^{2}$$

 \Rightarrow Using it inside the penalty $2\sigma^2 D_m/n$?

Naive estimator of σ^2

Naive estimator of σ^2 :

$$\widehat{\sigma}_m^2 := \frac{1}{n - D_m} \left\| Y - \widehat{F}_m \right\|^2$$

Bias of this estimator:

$$\mathbb{E}\left[\widehat{\sigma}_{m}^{2}\right] = \sigma^{2} + \frac{1}{n - D_{m}} \left\| (I_{n} - A_{m})F \right\|^{2}$$

 \Rightarrow Using it inside the penalty $2\sigma^2 D_m/n$? First idea:

$$\operatorname{crit}(m) = \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 + \frac{2\widehat{\sigma}_{m_0}^2 D_m}{n}$$

Drawbacks: we have to know/choose m_0 , overpenalization by an unknown factor

$$\operatorname{crit}_{\mathrm{FPE}}(m) = \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 + \frac{2\widehat{\sigma}_m^2 D_m}{n} = \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 \left(1 + \frac{2D_m}{n - D_m} \right)$$

(Akaike, 1970; see also Baraud, Giraud & Huet, 2009)

$$\operatorname{crit}_{\mathrm{FPE}}(m) = \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 + \frac{2\widehat{\sigma}_m^2 D_m}{n} = \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 \left(1 + \frac{2D_m}{n - D_m} \right)$$

(Akaike, 1970; see also Baraud, Giraud & Huet, 2009)

Generalized cross-validation (GCV, Craven & Wahba, 1979)

$$\operatorname{crit}_{\operatorname{GCV}}(m) = \frac{1}{n} \frac{\left\| Y - \widehat{F}_m \right\|^2}{\left(1 - \frac{D_m}{n}\right)^2}$$

$$\operatorname{crit}_{\mathrm{FPE}}(m) = \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 + \frac{2\widehat{\sigma}_m^2 D_m}{n} = \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 \left(1 + \frac{2D_m}{n - D_m} \right)$$

(Akaike, 1970; see also Baraud, Giraud & Huet, 2009)

Generalized cross-validation (GCV, Craven & Wahba, 1979)

$$\operatorname{crit}_{\mathrm{GCV}}(m) = \frac{1}{n} \frac{\left\| Y - \widehat{F}_m \right\|^2}{\left(1 - \frac{D_m}{n}\right)^2}$$

If $D_m \ll n$,

$$\operatorname{crit}_{\operatorname{GCV}}(m) \approx \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 \frac{n + D_m}{n - D_m} = \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 \left(1 + \frac{2D_m}{n - D_m} \right)$$

$$\operatorname{crit}_{\mathrm{FPE}}(m) = \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 + \frac{2\widehat{\sigma}_m^2 D_m}{n} = \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 \left(1 + \frac{2D_m}{n - D_m} \right)$$

(Akaike, 1970; see also Baraud, Giraud & Huet, 2009)

Generalized cross-validation (GCV, Craven & Wahba, 1979)

$$\operatorname{crit}_{\mathrm{GCV}}(m) = \frac{1}{n} \frac{\left\| Y - \widehat{F}_m \right\|^2}{\left(1 - \frac{D_m}{n}\right)^2}$$

If $D_m \ll n$,

$$\operatorname{crit}_{\operatorname{GCV}}(m) \approx \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 \frac{n + D_m}{n - D_m} = \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 \left(1 + \frac{2D_m}{n - D_m} \right)$$

Drawbacks: for the largest models $\|Y - \widehat{F}_m\|^2 \approx 0$

18/41

0000000

Outline

- An oracle inequality for model selection
- 3 Slope heuristics in homoscedastic regression

Minimal penalty: heuristics

For all C > 0,

$$\widehat{m}(C) \in \arg\min_{m \in \mathcal{M}_n} \left\{ \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 + \frac{CD_m}{n} \right\}$$

$$\Rightarrow \exists C_{\min} \text{ s.t.:}$$
 for $C < C_{\min}$, $\widehat{F}_{\widehat{m}(C)}$ overfits for $C > C_{\min}$, oracle-inequality for $\widehat{F}_{\widehat{m}(C)}$?

Minimal penalty: heuristics

For all C > 0,

$$\widehat{m}(C) \in \arg\min_{m \in \mathcal{M}_n} \left\{ \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 + \frac{CD_m}{n} \right\}$$

 $\Rightarrow \exists C_{\min} \text{ s.t.:}$ for $C < C_{\min}$, $\widehat{F}_{\widehat{m}(C)}$ overfits for $C > C_{\min}$, oracle-inequality for $\widehat{F}_{\widehat{m}(C)}$?

$$m^{\star}(C) \in \arg\min_{m \in \mathcal{M}_n} \left\{ \mathbb{E} \left[\frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 + \frac{CD_m}{n} \right] \right\}$$
$$= \arg\min_{m \in \mathcal{M}_n} \left\{ \frac{1}{n} \left\| F - F_m \right\|^2 + (C - \sigma^2) \frac{D_m}{n} \right\}$$

$$\mathbb{E}[n^{-1}||Y - \widehat{F}_m||^2] + 0.8 \times \sigma^2 D_m n^{-1}$$

$\mathbb{E}[n^{-1}||Y - \widehat{F}_m||^2] + 0.9 \times \sigma^2 D_m n^{-1}$

$\mathbb{E}[n^{-1}||Y - \widehat{F}_m||^2] + 1.1 \times \sigma^2 D_m n^{-1}$

$\mathbb{E}[n^{-1}||Y - \widehat{F}_m||^2] + 1.2 \times \sigma^2 D_m n^{-1}$

$$\mathbb{E}[n^{-1}||Y-\widehat{F}_m||^2] + \mathbf{2} \times \sigma^2 D_m n^{-1}$$

Dimension jump

Calibration of penalties (Birgé & Massart 2007)

• for all C > 0, compute

$$\widehat{m}(C) \in \arg\min_{m \in \mathcal{M}_n} \left\{ \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 + C \frac{D_m}{n} \right\}$$

- ② find \widehat{C}_{\min} such that $D_{\widehat{m}(C)}$ is "too large" when $C < \widehat{C}_{\min}$ and "reasonably small" when $C > \widehat{C}_{\min}$
- $\mathbf{3} \text{ select } \widehat{m} = \widehat{m} \left(2 \widehat{C}_{\min} \right)$

Proof: assumptions and concentration inequalities

Assumptions:

- polynomial complexity: $Card(\mathcal{M}_n) \leq C_{\mathcal{M}} n^{\alpha}$
- homoscedastic Gaussian noise, fixed design
- $\exists m_1, m_2 \in \mathcal{M}_n$ s.t. $D_{m_1} \ge n/2$, $D_{m_2} \le \sqrt{n}$ and $\forall i \in \{1, 2\}$, $n^{-1} ||F F_{m_i}||^2 \le \sigma^2 \sqrt{\ln(n)/n}$

Proposition

If
$$\xi \sim \mathcal{N}(0, I_n)$$
, $\alpha \in \mathbb{R}^n$, $M \in \mathcal{M}_n(\mathbb{R})$, for all $x \geq 0$,

$$\mathbb{P}\left(\left|\left\langle \xi,\,\alpha\right\rangle\right| \leq \sqrt{2x} \left\|\alpha\right\|_{2}\right) \geq 1 - 2e^{-x}$$

$$\mathbb{P}\left(\left|\left\langle \xi,\, M\xi\right\rangle - \operatorname{tr}(M)\right| \leq 2\sqrt{x\operatorname{tr}\left(M^{\top}M\right)} + 2\, |\!|\!|M|\!|\!|\, x\,\right) \geq 1 - 2e^{-x}$$

Theorem (1): Minimal penalty / Dimension jump

Theorem (Birgé & Massart 2007, A. & Bach 2009)

With probability at least $1 - 4C_M n^{-2}$, si $n \ge n_0(\alpha)$,

$$\forall C < \left(1 - 42\sqrt{\frac{(\alpha + 2)\ln(n)}{n}}\right)\sigma^2 , \quad D_{\widehat{m}(C)} \ge \frac{n}{3}$$

$$\forall C > \left(1 + 8\frac{\sqrt{(\alpha + 2)\ln(n)}}{n^{1/4}}\right)\sigma^2 , \quad D_{\widehat{m}(C)} \le n^{3/4}$$

and in the first case,

$$\left\|F - \widehat{F}_{\widehat{m}(C)}\right\|^2 \ge \ln(n) \inf_{m \in \mathcal{M}_n} \left\{ \left\|F - \widehat{F}_m\right\|^2 \right\}$$

Theorem (2): Oracle inequality

Theorem (Birgé & Massart 2007)

For every x > 0, with probability $1 - 4 \operatorname{Card}(\mathcal{M}_n)e^{-x}$, for every K > 1, $\delta > 0$, and every

$$\widehat{m}\left(K\sigma^{2}\right) \in \arg\min_{m \in \mathcal{M}_{n}} \left\{ \frac{1}{n} \left\| Y - \widehat{F}_{m} \right\|^{2} + \frac{K\sigma^{2} \dim(S_{m})}{n} \right\} ,$$

$$\frac{1}{n} \left\| \widehat{F}_{\widehat{m}(K\sigma^2)} - F \right\|^2 \le \left(\frac{1 + (K - 2)_+}{1 - (2 - K)_+} + \delta \right) \inf_{m \in \mathcal{M}_n} \left\{ \frac{1}{n} \left\| \widehat{F}_m - F \right\|^2 \right\} + \frac{C(K) \times \sigma^2}{\delta n}$$

Theorem (2): Oracle inequality

Theorem (Birgé & Massart 2007)

If
$$\mathbb{P}(2\widehat{C} \in \left[(1-\eta_-)2\sigma^2,(1+\eta_+)2\sigma^2\right]) \geq 1-4\mathcal{C}_{\mathcal{M}} n^{-2}$$
.

For every $x \ge 0$, with probability $1 - 4 \operatorname{Card}(\mathcal{M}_n) e^{-x} - 4 \mathcal{C}_{\mathcal{M}} n^{-2}$, for every $\delta > 0$, and every

$$\widehat{m}\left(2\widehat{C}\right) \in \arg\min_{m \in \mathcal{M}_n} \left\{ \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 + \frac{2\widehat{C}\dim(S_m)}{n} \right\} ,$$

$$\frac{1}{n} \left\| \widehat{F}_{\widehat{m}(2\widehat{C})} - F \right\|^2 \leq \left(\frac{1 + \eta_+}{1 - \eta_-} + \delta \right) \inf_{m \in \mathcal{M}_n} \left\{ \frac{1}{n} \left\| \widehat{F}_m - F \right\|^2 \right\} + \frac{\max\left\{ C(2 - \eta_-), C(2 + \eta_+) \right\} \times \sigma^2}{\delta n}$$

Theorem (2): Oracle inequality

Theorem (Birgé & Massart 2007)

We take $x = (\alpha + 2) \ln(n)$ and assume $n \ge n_0(\alpha)$.

With probability $1 - 4C_M n^{-2}$, for every

$$\widehat{m}\left(2\widehat{C}\right) \in \arg\min_{m \in \mathcal{M}_n} \left\{ \left. \frac{1}{n} \left\| Y - \widehat{F}_m \right\|^2 + \frac{2\widehat{C} \dim(S_m)}{n} \right. \right\} \ ,$$

$$\frac{1}{n} \left\| \widehat{F}_{\widehat{m}(2\widehat{C})} - F \right\|^2 \le \left(1 + \frac{L_{\alpha} \sqrt{\ln(n)}}{n^{1/4}} + \delta \right) \inf_{m \in \mathcal{M}_n} \left\{ \frac{1}{n} \left\| \widehat{F}_m - F \right\|^2 \right\} + \frac{L_{\alpha} \ln(n) \sigma^2}{s^{\frac{1}{n}}}$$

- An oracle inequality for model selection

- The slope heuristics

The slope heuristics (Birgé & Massart, 2007)

• existence of a minimal penalty $pen_{min}(m)$:

$$\widehat{m}_{\mathsf{min}}(C) \in \mathsf{arg} \min_{m \in \mathcal{M}_n} \left\{ P_n \gamma \left(\widehat{s}_m \right) + C \, \mathsf{pen}_{\mathsf{min}}(m) \right\}$$

$$\frac{\ell\left(s^{\star},\widehat{s}_{\widehat{m}_{\min}\left(\mathcal{C}\right)}\right)}{\inf_{m\in\mathcal{M}_{n}}\left\{\ell\left(s^{\star},\widehat{s}_{m}\right)\right\}}\quad\text{jumps at }\mathcal{C}=1$$

The slope heuristics (Birgé & Massart, 2007)

• existence of a minimal penalty $pen_{min}(m)$:

$$\widehat{m}_{\min}(C) \in \arg\min_{m \in \mathcal{M}_n} \left\{ P_n \gamma \left(\widehat{s}_m \right) + C \operatorname{pen}_{\min}(m) \right\}$$

$$\frac{\ell\left(s^{\star},\widehat{s}_{\widehat{m}_{\min}\left(\mathcal{C}\right)}\right)}{\inf_{m\in\mathcal{M}_{n}}\left\{\ell\left(s^{\star},\widehat{s}_{m}\right)\right\}}\quad\text{jumps at }\mathcal{C}=1$$

2 the minimal penalty can be detected:

$$\mathcal{C}_{\widehat{m}_{\mathsf{min}}(\mathcal{C})}$$
 "jumps" around $\mathcal{C}=1$

The slope heuristics (Birgé & Massart, 2007)

• existence of a minimal penalty $pen_{min}(m)$:

$$\widehat{m}_{\min}(C) \in \arg\min_{m \in \mathcal{M}_n} \left\{ P_n \gamma \left(\widehat{s}_m \right) + C \operatorname{pen}_{\min}(m) \right\}$$

$$\frac{\ell\left(s^{\star},\widehat{s}_{\widehat{m}_{\min}\left(\mathcal{C}\right)}\right)}{\inf_{m\in\mathcal{M}_{n}}\left\{\ell\left(s^{\star},\widehat{s}_{m}\right)\right\}}\quad\text{jumps at }\mathcal{C}=1$$

- 2 the minimal penalty can be detected: $C_{\widehat{m}_{\min}(C)}$ "jumps" around C=1
- 3 link between minimal and optimal penalty:

$$pen_{opt}(m) \approx 2 pen_{min}(m)$$

Slope heuristics

Data-driven penalties with the slope heuristics

Inputs:
$$(pen_0(m))_{m \in \mathcal{M}_n}$$
 $(\mathcal{C}_m)_{m \in \mathcal{M}_n}$

Assumption: $pen_0(m) \propto pen_{min}(m)$

• for every C > 0, compute

$$\widehat{m}(C) \in \arg\min_{m \in \mathcal{M}_n} \{ P_n \gamma(\widehat{s}_m) + C \operatorname{pen}_0(m) \}$$

- ② find \widehat{C}_{\min} such that $\mathcal{C}_{\widehat{m}(C)}$ is "too large" when $C < \widehat{C}_{\min}$ and "reasonably small" when $C > \widehat{C}_{\min}$

Slope heuristics 000000

$$p_2(m) = P_n(\gamma(s_m^*) - \gamma(\widehat{s}_m))$$
 $pen_{min}(m) = \mathbb{E}[p_2(m)]$

Slope heuristics recipe

$$p_2(m) = P_n(\gamma(s_m^*) - \gamma(\widehat{s}_m))$$
 $pen_{min}(m) = \mathbb{E}[p_2(m)]$ $p_1(m) = P(\gamma(\widehat{s}_m) - \gamma(s_m^*))$ $\delta(m) = (P - P_n)\gamma(s_m^*)$ $pen_{id}(m) = p_1(m) + p_2(m) - \delta(m)$ $\mathbb{E}[pen_{id}(m)] = pen_{opt}(m) = \mathbb{E}[p_1(m)] + \mathbb{E}[p_2(m)]$

$$p_2(m) = P_n(\gamma(s_m^*) - \gamma(\widehat{s}_m))$$
 $pen_{min}(m) = \mathbb{E}[p_2(m)]$

$$p_1(m) = P(\gamma(\widehat{s}_m) - \gamma(s_m^*))$$
 $\delta(m) = (P - P_n)\gamma(s_m^*)$

$$ext{pen}_{\mathrm{id}}(m) = p_1(m) + p_2(m) - \delta(m)$$
 $\mathbb{E}\left[\operatorname{pen}_{\mathrm{id}}(m)\right] = \operatorname{pen}_{\mathrm{opt}}(m) = \mathbb{E}\left[p_1(m)\right] + \mathbb{E}\left[p_2(m)\right]$

Heuristics: $p_1(m) \approx p_2(m)$

- concentration of p_1 , p_2 , δ
- $\mathbb{E}[p_1(m)] \approx \mathbb{E}[p_2(m)]$
- increase of the expectation for compensating the bias

Known results

- Least-squares, regression, homoscedastic Gaussian noise (Birgé & Massart, 2007)
- Heteroscedastic regressograms (A. & Massart, 2009)
- Least-squares density estimation, i.i.d. (Lerasle, 2009) or mixing data (Lerasle, 2010)
- Minimum contrast estimators, regular contrast (Saumard, 2010)

Slope heuristics

- Regular contrast on some convex model S_m :
 - $s_m^{\star} \in \operatorname{arg\,min}_{t \in S_m} P_{\gamma}(t)$ exists
 - $t \in S_m \mapsto P\gamma(t)$ strictly convex
 - $\exists c > 0$, $t \in B_{\infty}(s_{\infty}^{\star}, c) \mapsto \gamma(t; \cdot) \in L_{\infty}(P)$ is \mathcal{C}^3
- Concentration of $p_1(m)$ and $p_2(m)$ around the same deterministic quantity $D_m \mathcal{K}_m^2/(4n)$ (unobservable in general)
- + control of $\|\widehat{s}_m s_m^{\star}\|_{\infty}$
- ⇒ validates the slope heuristics for:
 - heteroscedastic regression (histograms, piecewise polynomials)
 - least-squares density estimation
 - log-likelihood density estimation on histograms

Experimental results

- Change-point detection (Lebarbier, 2005)
- Gaussian mixture models (Maugis & Michel, 2008)
- Unsupervised classification (choice of the number of clusters) (Baudry, 2009)
- Computational geometry (Caillerie & Michel, 2009)
- Lasso (Connault, 2011)
- ...

for a complete list, see Baudry, Maugis & Michel, 2010

Outline

- An oracle inequality for model selection

- Practical issues

Practical qualities of the algorithm

- visual checking of existence of a jump
- calibration independent from the choice of some m_0
- too strong overfitting almost impossible
- one remaining parameter: how to localize the jump

How to localize the jump in practice?

 Complexity jump: largest jump? largest relative jump? complexity threshold?

How to localize the jump in practice?

- Complexity jump: largest jump? largest relative jump? complexity threshold?
- Estimation of the slope of the empirical risk as a function of the complexity:
 - computed with which models? robust regression?

How to localize the jump in practice?

- Complexity jump: largest jump? largest relative jump? complexity threshold?
- Estimation of the slope of the empirical risk as a function of the complexity: computed with which models? robust regression?
- Jump vs. slope? Take both! ⇒ package CAPUSHE (Baudry, Maugis & Michel, 2010) http://www.math.univ-toulouse.fr/~maugis/CAPUSHE.html

CAPUSHE (Baudry, Maugis & Michel, 2010): slope

CAPUSHE (Baudry, Maugis & Michel, 2010): jump

Outline

- An oracle inequality for model selection
- 2 The penalty calibration problem
- 3 Slope heuristics in homoscedastic regression
- The slope heuristics
- 6 Practical issues
- 6 Conclusion

Overpenalization

