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Stokes Equations. Implement in FreeFem++

Whe wish in this sequel to combine two finite elements, namely P1-Lagrange and P2-Lagrange, in the dis-
cretization of a boundary limits problem. This approach is often used to solve PDE with vectorial solution.
We consider here the Stokes problem.

Theme - 1 Stokes Problem

Let Q C R2 be open, bounded and Lipschitz domain. Let f, up be two functions R2 — R. We consider the
following problem:

Find two functions u : R> — R?, p : R? — R such that

—Au+Vp= f in
V-u= 0 in (1)
u= up on N
Where, for u = (u1, uz)?, we have defined  Au = (Aup, Aug)t, V- u = 24 4 Juz

. 02 N2
And for any function v : R? = R, Av = % + gTZ.

Exercice-1 : \ Variational Formulation

Let
HY Q) = {v e L*(Q); Vv € (LA(Q)*}, H}(Q) ={ve H(Q);v =0 on 9Q},

V = Hy(Q) x Hy(Q), M= {q€L2(Q);/qudy:0}7
Q
2
a(u,v):/Vu:Vvda:dyZZ/Vui'Vvidw, b(v,p):—/pv'vdxdy,
Q — Ja Q

l(v)= / f-vdzdy.
Q

. . L 2 - . .
We assume that there exists a unigue function up € (H ! (Q)) whose restriction on 052 coincides with up.
(It is the image of (up)|oq by the boundary continuous lifting operator, whose details are beyond the scope
of the present class.)

Show that the variational formulation of problem () is given by:

Seek u € up + V et p € M such that
a(u,v) +b(v,p) =l(v) VvevV, 2)
b(u,q) =0 Vg € M.

We assume that this problem admits a unique solution with sufficient regularity such that it can be evaluated
point-wise.



Theéme - 2 Discretization by the Taylor-Hood finite element

To discretize the Stokes problem, we are going to introduce two finite element spaces, one for the velocity
and the other for the pressure. The association of the these two finite element spaces must be done judiciously
since it should be make sure that for a given velocity, the problem over the pressure is well-posed. The
selection of these two finite element spaces is thus subject to a constraint known as the discrete inf-sup or
BNB (Banach-Necas-Babuska) condition. Several pairs of finite element has overcome this constraint. Let us
mention as example, the Taylor-Hood finite element, also referred to as P2/P1 finite elements. It consists of
approximating the velocity by P2-Lagrange finite element and the pressure by P1-Lagrange finite element.

\ Exercice-1 : | Discretization with P2/P1 finite elements

Let 75, be a conformal mesh of €2, made of triangles.

Finite elements spaces and discrete problem. Let V;, C V and M}, C M the two vector space of finite
dimension defined as follows:

X' ={pn € C%Q) : pp|7 € P.(T)VT € 1},

where P,.(T) is the vector space of polynomials of total degree 7 on the triangle 7', (recall that X} is the
Pr-Lagrange finite elements space),

Vi = {vh € X? x X7 such that : v;, =0 on 9Q},

My, = {qn € X}L such that / qn dxr = 0}.
Q
The discrete problem reads:

Seek uy, € upp + Vi and pp, € My, such that
a(up, vp) +b(va,pr) = U(vy) Vv €V, (3)
b(up, qn) =0 Yan € My,

where Gy, is the interpolate of p in X7 x X7.

1. Assuming that the mesh is made of N, vertices, N,,, triangles, N, edges with N, boundary edges.
Gives in terms of those quantities the dimension of the spaces X7 ,r = 1,2, Vj, and Mj,.

2. We admit that this discrete problem has a unique solution. (It is important to check that).

Write a script with FreeFem++ to solve the problem.

Exercice-2 : | Post-processing. For the post-processing one can either display the solution or compute the
numerical errors.

1. Graphical display of the computed velocity. Display in a graphic the computed velocity. (The velocity
can be display by plotting a vector at each position of the degree of freedom).

2. Graphical display of the pressure. The pressure is a scalar quantity, we ca just display its isovalues
just as for the Laplace problem .

3. Example: driven cavity Take 2 =]0, 1[x]0, 1[, f = (f1, fo)', up = (g1, g2)!, with

filz,y) =1, gi(z,y) =1siy=1,0 sinon,
fo(z,y) =1, g92(z,y) = 0.

Display the the computed velocity and pressure on the unit square.



4. Numerical estimation of the error. Let us recall that an error between the exact solution u and the
computed one uy, in a given norm, namely ||u — up,|| is bounded by

[l = unll < flu = mn(u)l] + [0 (w) = unll

The first term in the right is the interpolation error. It is the best we can obtain, since in its principle,
the Galerkin method consists in plugging “an interpolated (with unknown coefficients)” (i.e wp) in the
variational formulation. It is obvious that doing this one cannot expect an error ||u — uy,|| which is better
than ||u — 7 (w)||. It is for this reason that one can just sometimes compute the quantity

l7mh (u) — up|| and consider it as the numerical error.

Let us consider the following inputs for the Stokes problem: Q =]0,1[x]0,1[, f = (f1, f2)', up =
(91,92)", with

‘ fi(z,y) =2sin(r(z + 1)) + 2 cos(m(z +y),  gi(2,y) = Hsin(n(z +y)),
fa(@,y) = =2sin(r(z +y)) + = cos(w(z +y)), g2(z,y) = —Z sin(r(z +y)).

for which the exact solution is given by
1 . 1 . 1.
uy(z,y) = 3 sin(m(x +y)), waz,y)= =~ sin(m(z +v)), plz,y) = =~ sin(m(z +y)).

We aim at computing the errors in the L? norm. We wish to evaluate

Imn(ur) — winllre),  1mh(u2) — usnllrz@), 17 (P) — pall2q),

where 7r,2l is the P2—Lagrange interpolation operator, 7r,§ that of of the P1-Lagrange finite elements,
(u1p, uop) are the components of the computed velocity and pj, is the computed pressure.

(a) Using these functions, compute the numerical errors in the discretization of the stokes equation
using the P2/ P1 Finite elements.

(b) By making the mesh a more and more finer, display the evolution of the L? error with respect to
the mesh size h = maxre,, hr, where hr denotes the diameter of the triangle 7'.

What is the observed convergence order for the velocity and for the pressure?

Theéme - 3 Advanced applications

Consider the matrix formulation of the P2/P1 discretization of the Stokes problem.

\ Exercice-1 : \ Propose et justify an iterative algorithm to solve it.

\Exercice-Z : \ Seek a preconditioner which is scalable in the sens that the number of iterations of the
algorithm is independent of the mesh size. Try to justify your choice.

‘Exercice-3 : ‘ Implement your preconditioner in FreeFem++. You should check for the FreeFem++
function LinearCG.

‘ Tips to answer to the questions

Hllustration of the condensation

One can solve the matricial formulation of the Stokes problem by an iterative, called Uzawa conjugate gradi-
ent.



This consists in condensing the discrete Stokes problem over the pressure variable and to solve the resulting
problem using the conjugate gradient method.

More precisely, one goes from the problem (),

A1 0 Bl U1 Fl
0 Ay B Us | = | Fy |. “4)
B! B! 0 P 0

and transform it into problems ([3))-(6)

Uy = A{H(Fy — By P), 5)
Uy = Ay Y (Fy — By P),
(BIAT'B) + BSA;'By)P = BIAT'Fy + BYAS ' Fy. (6)

We then solve the problem (6)), by an iterative algorithm of conjugate gradient type, ensuring that the starting
value is P = 0, in order to obtain a pressure with zero mean value. Then we compute the velocity using

formula ().

Remark:

e [Itis advised in practice, not to compute explicitly the matrix and the vector :
A=BiA'By + BLA;'By and F = BiA'Fy + BSAS Py,

Because not only this matrix can be full, but also in much iterative algorithms only matrix-vector prod-
ucts and scalar products are required. So we only compute the matrix-vector product Ax with the given
A without computing the matrix A explicitly.

 In order to reduce the number of iterations, it is advised to use a preconditioner. This consists in seeking
a matrix (or operator) M, easy to invert such that : cond(M ' A) < cond(A). Where cond(A) is the
condition number of the matrix A.

Hllustration of the usage of LinearCG ‘

Let us consider the elliptic problem of the previous file.

Listing 1: Elliptic problem with LinearCG

//@Jean—-Baptiste APOUNG

//Definition du maillage

mesh Th=square (10,10);

//Contrction de 1'espace elements finis

fespace Xh (Th,P1);

//Inconnue et function test

Xh u,v;

//variableq pour linear CG

Xh F, /#Vecteur qui contiendra le second membre int2d(Th) ( fxv ) */
bc, /% Vecteur qui contiendra la condition aux limitesx/
ppp; /*Variable éutilise dans la édfinition de la fonction r —> A*x — 4=

b */

func uD = X*x+y=*y;
func £ = -4;
//C'est ici que la énouveaut apparait
//0n édfinit une forme bilineaire qui nous permetra d'extraire la matrice
// et les conditions aux limites
varf aA(u,v)= int2d(Th) ( dx(u)+dx(v) + dy(u)x*dy(v) )
+ on(l,2,3,4,u=uD);
//Idem pour le second membre




varf aF(u,v)= int2d(Th) ( f*v );

//Extraction de la matrice avec choix du solveur pour son inversion
matrix A= aA (Xh,Xh,solver=CG);

//Extraction de la condition aux limites

bc[] = aA(0,Xh);

//€éReprsentation graphique de la condition aux limites

plot (bc, value=true, wait=1);

//Recuperation du second membre sous forme de vecteur
F[] = aF(0,Xh);

//Definition du éproblme lineaire aé rsoudre:
// i.e on érsout residus(x) = 0
func real[int] residus(real[int] & pp)
{
//on doit construire et retourner
// b — A * pp
int verb=verbosity;
verbosity=0; //éprsvention des affichages inutiles
pppl]= F[] + bc[];
pppl] *=-1.;
pppl[] += A * pp ;
verbosity=verb; //restoration des affichage
pp = pppl];
return pp;
};

//Construction du éprconditionneur
Xh ppm;

func real[int] precM(real[int] & pp)
{

ppm[] = pp;
pp = A-Ixppm[]; //Ceci doit étre assoupli
return pp;
};
//Initialisation de gradient €conjugu
u=0;,
//Appel du gradient éconjugu
LinearCG (residus,ul],precon = precM,eps=1.e-6,nbiter=50);
//LinearGMRES (residus,u[],nbiter=50,eps=1.e-6);

//Dessin de la solution
plot (u, wait=1, value=true),

Help script for Stokes problem with FreeFem++

Listing 2: Script FreeFem++ pour Stokes avec cavité entrainée

//@ Jean—-Baptiste APOUNG

//Maillage du domaine

mesh Th=square (10,10);

//Expace d'approximation de chaque composante de la vitess
fespace Vh (Th,P2);

//Expace d'approximation de la pression

fespace Wh(Th,P1);

Vh ul,u2; //composantes de la vitesse
Vh vl,v2; //fonctions tests

Wh p; //pression a calculer

Wh q; //fonction test




//éparamtre de éLam
real nu=1;

//éEntres du éproblme pour la écavit iéentrane
func g=(x) * (1-x) *4;

func f1 =1;

func 2 =1;

//&Problme variationnel
problem Stokes ([ul,u2,p],[Vv1,v2,q],solver=Crout) =
int2d (Th) (
nu * ( dx(ul)x*dx(vl) + dy(ul)x*dy(vl)
+ dx (u2) xdx (v2) + dy(u2)*dy(v2) )
+ p*g*(0.000001) /+ ne pas oublier ce terme */
- prxdx(vl) - pxdy(v2)
- dx(ul) g — dy(u2) *qg
)
+ int2d (Th) ( —-flxvl — f2xv2 )
+ on(3,ul=qg,u2=0)
+on(l,2,4,ul=0,u2=0);

//éRsolution

Stokes;

//postprocessing

plot (coef=0.2,emm=" [ul,u2] et p ",p,[ul,u2],ps="StokesP2P1.eps",value=1,<>
wait=1) ;

Listing 3: Script FreeFem-++ for Stokes Uzawa

//@ Jean—-Baptiste APOUNG
assert (version>1.18);

real sO=clock();

mesh Th=square (20,20);
fespace Xh(Th,P2),Mh (Th,P1);
Xh ul,u2,v1,v2;

Mh p,q, ppp;

varf bx(ul,q) = int2d(Th) ( (dx(ul) *q));

varf by (ul,q) = int2d(Th) ( (dy(ul) *q));

varf mp(p,q)= int2d(Th) ( p*q );

varf a(ul,u2)= int2d(Th) ( dx(ul)+dx(u2) + dy(ul)=dy(u2) )
+ on(l,2,4,ul=0) + on(3,ul=1) ;

Xh bcl; bcl[] = a(0,Xh);
Xh b;

//matrix A= a(Xh,Xh,solver=CG);
matrix A= a (Xh,Xh,solver=UMFPACK) ;
matrix Bx= bx (Xh,Mh);

matrix By= by (Xh,Mh);

matrix M= mp (Mh,Mh, solver=UMFPACK) ;

Xh bcx=1,bcy=0;

func real[int] divup(real[int] & pp)
{
int verb=verbosity;
verbosity=0;
b[] Bx’#pp; b[] += bcl[] .+bcx[];
ull[] = A"=1+b[];
b[] By’ *pp; b[] += bcl[] .*bcyl[];
u2[] A =1+b[];



pppl] =  Bxxull];
ppp[] += By=xu2[];
verbosity=verb;
return pppl[] ;

Vi

//Pressure Mass preconditionner
func real[int] precM(real[int] & pp)
{

pppl[] = M -1xpp;
return pppl];
};
p=0,9=0,;,ul=0;v1=0;
LinearCG (divup,p(],ql],eps=1.e—6,nbiter=50);

//LinearCG (divup,p[], precon=precM, eps=1.e—6,nbiter=50);

divup (p[]);

plot ([ul,u2],p,wait=1,value=true, coef=0.1);




