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Abstract The Darcy velocity plays an important role
in the flow in porous media, particularly when a misci-
ble displacement is concerned. One major requirement
when approximating this velocity is the continuity of its
normal component. The discontinuous Galerkin meth-
ods, by nature, are not well designed for this challenge,
since approximations are performed in space of totally
discontinuous polynomials. We propose in such context
a penalty approach, in order to enhance the continuity
of the normal component of the Darcy velocity. The
resulting formulation is shown to be stable whatever
the origin of the pressure but requires the inversion
of a global matrix. We then propose two modifications
leading to the inversion of only local matrices. Er-
ror estimates are furnished and the analysis of the
penalty parameter vis-a-vis the computed pressure is
addressed. We show that the proposed reconstructions
have better performance compared to the simple local
differentiation of the computed pressure. Numerical
tests are provided to illustrate the theoretical results.
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1 Introduction

The flow computation in porous media amounts to
seek the distribution of the pressure and that of the
Darcy velocity over the media. It often happens that the
computed velocity is coupled with transport in porous
media. Consequently at the computational level, the
numerical method needs to produce an accurate
velocity.

In the discontinuous Galerkin (DG) approximation
theory [2, 3, 17], two types of formulation are used. The
first is the mixed formulation in which the velocity and
the pressure are computed simultaneously (see [10, 12–
16, 18, 22]). The second is the primal formulation where
the problem is transformed into a single one over the
pressure (see [5, 10, 12, 26–28, 30]), and the velocity
is obtained by a post-processing technique. Unluckily,
flow computation in real life involves huge spatial do-
main and long time calculation. This unfortunately re-
quires not only intensive computing, which are memory
consuming, but also efficiency in the computation of
the Darcy velocity. A good trade-off between memory
consummation and efficiency in computing the Darcy
velocity is the primal formulation if an efficient post-
processing velocity technique is available. Unfortu-
nately, obtaining better velocity approximations is not
a simple task. A requirement for the Darcy velocity
is to possess continuous normal component [7]. Most
post-processing techniques associated to primal DG
formulation involve the so-called lifting operators (see
for instance [10, 12–16, 18, 21–23]). Using this lifting
operators, the velocity is sought in a space of totally dis-
continuous functions, which may result in a computed
velocity with a poor continuous normal component at
the interface between two sub-domains. An alternative
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was shown to resort to a projection into conformal
finite element spaces. Following this idea, Bastian and
Rivière, see [7], require the Brezzis–Douglas–Marini
(BDM) space projection (see [11]), to derive a local
H-div projection. This projection only requires the cell-
to-cell computation of discontinuous Galerkin velocity
and ensures the continuity of the mean value of the
velocity across the interfaces. However, not all infor-
mation on the primal equation are used. Therefore,
Ern et al. [19] found it efficient to use the pressure
equation and consequently the DG fluxes for post-
processing the velocity. This led them to require the
Raviart Thomas finite element space [25]. Since all
conformal finite elements suffer from instability when
distorted elements are used [24], we find it necessary
to still use the discontinuous Galerkin approximation
of the velocity and to efficiently enforce the continuity
of the normal component of the Darcy velocity across
the interfaces between elements by a penalty approach.
This is motivated by the fact that best methods on
distorted elements are those capable of getting rid of
the reference element. This is exactly one power of
the DG formulations (see the concluding remark in
[30]). The only requirement in such elements reduces to
defining efficient quadrature formula. This is possible
because distorted elements can be decomposed into
simplexes over which efficient quadrature formula are
available.

In this paper, we present three velocity post-
processing techniques and compare them to a simple lo-
cal differentiation procedure. All these reconstructions
make use in their analysis of all the properties of the
primal formulation but possess independent interpre-
tations which endowed them with advantageous prop-
erties. They are a kind of stabilization at the discrete
level of the continuous level lifting operators. With
the first reconstruction, optimal error estimates are
provided. This reconstruction is well designed for en-
forcing the continuity of the normal component of the
velocity. The price to pay is that the associated matrix
is not block-diagonal. Hence, we further propose two
modifications ensuring the same optimal convergence
rate in L2 norm and in the L∞ norm of the jump
of the normal component of the velocity. These re-
constructions allow for a local-to-one-cell computation
of the velocity; these are still better than the simple
local-in-the-cell differentiation even though they are
less efficient than the previous. Numerical results are
provided which validate the errors estimate analysis
and compare the three reconstructions with the simple
local-in-the-cell differentiation of the pressure.

The good theoretical and numerical behavior of the
three reconstruction procedures is due to specificity of

the computed pressured. A specific control, by the help
of some parameters, of the jump of the pressure and the
jump of its normal derivative should be possible (see
in the preliminary section below). These assumptions
can affect the penalty parameter in the reconstructed
velocity. Several primal DG formulations automatically
satisfy those stability constraints, and a specific one
is pointed out in the preliminary section of the this
paper. We therefore analyze the stability parameter in
all reconstruction and show that only that of the second
reconstruction is dependent on the stability property
of the formulation used to compute the pressure. We
therefore supply explicit bounds on the stability para-
meter in this case.

The paper is organized as follows: In Section 2,
the model equation and notations are presented, then
followed in Section 3 by some assumptions on the com-
puted pressure, necessary for the error estimates and
the stability analysis of the proposed velocity recon-
structions. In Section 4, we present and analyze three
reconstruction techniques. Numerical validations of the
error estimates and the comparison of the different
reconstructions are addressed in Sections 5 and 6. The
conclusions of our analysis is presented in Section 7.

2 Model problem and notations

2.1 Model problem

Let � ⊂ Rd, d = 2, 3 be an open-bounded convex and
polygonal domain with Lipschitz boundary. We con-
sider the following problem:

⎧
⎨

⎩

−∇ · (K∇ p) = f in �,

p = pD on �D,

(K∇ p) · n = gN on �N,

(1)

where �N and �D denote the Dirichlet and Neumann
parts of the boundary ∂�, respectively, �̄D ∪ �̄N =
∂� and �D ∩ �N = ∅. Here, n represents the unit
normal vector external to ∂�. We suppose that the
Dirichlet part of the boundary is not empty and
has positive (d − 1)-Lebesgue measure (|�D| > 0), f ∈
L2(�), pD ∈ H1/2(�D), gN ∈ L2(�N). We assume that
K = (Ki, j)1≤i, j≤d ∈ (L∞(�))d,d is a symmetric positive
definite tensor, satisfying

0 < λm|ζ |2 ≤
d∑

i, j=1

Kij(x)ζiζ j

≤ λM|ζ |2 < ∞, x ∈ �, 0 
= ζ ∈ Rd, (2)
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where λm and λM are non-negative real numbers. We
introduce for any subset E ⊂ � two non-negative real
numbers λE

m and λE
M such that

0 < λE
m|ζ |2 ≤

d∑

i, j=1

Kij(x)ζiζ j

≤ λE
M|ζ |2 < ∞, x ∈ E, 0 
= ζ ∈ Rd. (3)

Equation 1 models a permanent flow in a porous media,
where p denotes the hydrodynamic pressure. Under
specific conditions that we will assumed herein, this
problem has a unique solution with sufficient regularity
allowing to compute some first-order derivatives of p
(see for instance [1, 9, 20]). Consequently, it is often
common to compute the quantity

u = −K∇ p (4)

called the Darcy velocity which plays important role in
transport in porous media (see [6–8, 19, 26]).

When the solution of Eq. 1 has been obtained using
specific discretization method, then the problem of
approximating the solution of Eq. 4 in a given space
is referred to as post-processing of the Darcy velocity
in that space. This is called post-precessing because the
simple differentiation through formula (4) will not give
satisfactory result, namely for non-polynomial K, the
result will not even be polynomial.

In the present paper, we aim at post-processing the
Darcy velocity in the space of totally discontinuous
polynomials because efficient discontinuous Galerkin
method for computing Eq. 1 is available. Therefore,
if we could compute the Darcy velocity using the DG
method, we would then reduce considerably the imple-
mentation and the computational effort when solving
coupled flow and transport in porous media.

However, it is well-known in such coupling that a
minimal requirement for the Darcy velocity is to belong
to the space of vectorial functions, each component of
which is in L2(�) and whose divergence falls in L2(�),
namely the space Hdiv(�). This is achieved in broken
space settings provided that the normal trace of u is
continuous across the interfaces between subsets of �.
Because DG fails within the broken-space setting, our
strategy will be to use penalty approach for enforcing
the continuity of the normal component of the velocity.

We give three different formulations, two of which
are modification of the first one with the purpose of
reducing the computational effort as well as the depen-
dency of the stability parameter vis-a-vis the computed
pressure. Let us point out that the computed pressure is
subject to a stability constraint involving some specifics
parameters. It will be user-prone that this constraint

does not affect the stability parameter in the post-
precessing of the Darcy velocity.

2.2 Definitions and notations

Let τh , with h > 0, be a possibly non-conforming
finite partition of � into elements {E} with Lipschitz
boundary ∂ E. We associate with any element E ∈ τh

its measure |E|, its diameter hE = max
x,y∈E

|x − y|, and

assume that h = max
E∈τh

hE. The partition τh is assumed

to be regular in the sense that any element E ∈ τh

is convex and there exists a constant ρ > 0 such that
the ball of radius ρ hE is contained in each simplex
obtained by connecting vertices of E. The partition τh

is also assumed to be quasi-uniform, i.e., there exists
a constant τ > 0 such that h

hE
< τ for all E ∈ τh. We

associate with τh the set of interior faces denoted by
ξ

′
h and the set of boundary faces denoted ξ∂

h , both
defined as

ξ
′
h = {

e = ∂ E ∩ ∂ E′, mes(∂ E ∩ ∂ E′) > 0
}
,

ξ ∂
h = {e = ∂ E ∩ ∂�, mes(∂ E ∩ ∂�) > 0} .

The set of all faces is referred to as ξh = ξ
′
h ∪ ξ∂

h . More-
over, to account for boundary conditions, we further
split the boundary faces as follows ξ∂

h = ξD
h ∪ ξN

h where,

ξD
h = {e = ∂ E ∩ �D, mes(∂ E ∩ �D) > 0} ,

ξN
h = {e = ∂ E ∩ �N, mes(∂ E ∩ �N) > 0} .

For any element E ∈ τh, the outward unit normal vector
on ∂ E is denoted by n. We also associate with any
e ∈ ξh a unit normal vector ne which coincides with the
outward unit normal vector to ∂� if e ∈ ξ∂

h .
For any integer s and non-empty subset S ⊂ � where

S can either be � or any element of τh or ξh, we denote
by Hs(S) the usual Sobolev space endowed with the
usual norm ‖ · ‖s,S. If S = �, we simply write ‖ · ‖s. We
define the broken space Hs(τh) as

Hs(τh) = {
v ∈ L2(�); v|E ∈ Hs(E), ∀E ∈ τh

}
(5)

and the finite element approximation space Vk
h ⊂

Hs(τh) for any k ≥ 1 as

Vk
h = {

v ∈ L2(�); v|E ∈ Pk(E), ∀E ∈ τh
}
, (6)

where Pk(E) is the set of polynomial functions of de-
gree k on E. Since the order of the polynomial approx-
imation can vary over elements of τh, we denote by
kE the order of this approximation on element E ∈ τh.
Therefore, the superscript k in notation Vk

h will stand
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for the minimal value of kE over all elements E ∈ τh.
We will also use thee following space:


k
h = (

Vk
h

)d
. (7)

Since the broken space contains discontinuous func-
tions, it is necessary to define the jumps and the means
of functions in Hs(τh), s ≥ 2. Let then u ∈ Hs(τh), s ≥ 2,
and e ∈ ξ

′
h shared by two elements E and E′. Let ne be

the unit normal vector on e, directed from E to E′. The
jump of u on e, denoted by [[v]], and the mean of v on e,
denoted by {v}, are defined as

[[v]] = (v|E)|e − (v|E′)|e, {v} = (v|E)|e + (v|E′)|e
2

. (8)

where v|E stands for the restriction of v on E. If v

is a vector-valued function, its jumps and means are
obtained by applying the definition to each component
of v.

In the sequel, we adopt the following convention:
Any internal face is shared by two elements denoted
E and E′, and we simply write the restriction of any
function v on those elements as v and v′, respectively.
The unit normal vector ne is supposed to be outward to
E, i.e., ne = n = −n′, such that the jump and the mean
of v on e simply read [[v]] = v − v′, {v} = v+v′

2 .

We will need the following inverse trace inequality
due to Warburton and Hesthaven [31].

Lemma 1 (Inverse inequality) Let E ∈ τh be a subset of
R

d and q ∈ Pk(E). Then

‖q‖0,e ≤
√

(k + 1)(k + d)

d
|e|
|E| ‖q‖0,E ∀e ⊂ ∂ E, (9)

where |e| and |E| denote the measure of e and E,
respectively.

We will also assume the following interpolation
property taking from [29].

Lemma 2 (Approximation) Let E ∈ τh and p ∈ Hs(E).
There exists a constant C independent of p, k, hE and a
sequence of polynomials p̂k ∈ Pk(E), k = 1, 2 · · · , such
that

‖p − p̂k‖r,E ≤ C
hμ−r

E

ks−r
‖p‖s,E, 0 ≤ r < μ,

‖p − p̂k‖r,e ≤ C
h

μ−r− 1
2

E

ks−r− 1
2

‖p‖s,E, 0 ≤ r < μ − 1

2
, (10)

where μ = min(k + 1, s) and e ⊂ ∂ E.

With all these descriptions at hands, let us now point
some assumption on the approximated pressure from
which the Darcy velocity will be derived.

3 Preliminaries

The post-precessing of the velocity presented in this
paper although capable of providing good solutions
whenever the origin of the pressure will require some
assumptions on the computed pressure in order to
enable the a priori error estimate for that velocity.
Henceforth, we will assume that the pressure has been
computed in such a way that the following holds:

Let p ∈ H1(�) ∩ Hs(τh), with s ≥ 2 be the solution
of Eq. 1 and ph ∈ Vk

h , k ≥ 2 be the computed approx-
imation of p; then there exists a constant C > 0 inde-
pendent of k, h such that

||| p − ph |||2 ≤ C
h2μ−2

k2s−3

∑

E∈τh

‖p‖2
s,E, (11)

where μ = min(k + 1, s) and

||| η |||2 = B(η, η) + Jβh(η, η) + Hβh(η, η)

+ Hβh
BN(η, η) + Mβh(η, η), (12)

with

βh = σ
k2

h
, σ > 0, (13)

B(p, q) =
∑

E∈τh

∫

E
K∇ p · ∇q dx, (14)

Jβ(p, q) =
∑

e∈ξ
′
h

β

2

∫

e
[[p]][[q]] dγ +

∑

e∈ξD
h

β

∫

e
pq dγ , (15)

Hβ(p, q)

=
∑

e∈ξ
′
h

1

2β

∫

e
[[(K∇ p) · ne]][[(K∇q) · ne]] dγ , (16)

Hβ

BN(p, q) =
∑

e∈ξN
h

1

β

∫

e
(K∇ p) · ne (K∇q) · ne dγ , (17)

Mβ(p, q) =
∑

e∈ξ
′
h

2

β

∫

e
{(K∇ p) · ne}{(K∇q) · ne} dγ

+
∑

e∈ξD
h

1

β

∫

e
(K∇ p) · ne(K∇q) · ne dγ . (18)
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With parameter βh in Eq. 13 selected such that there
exist a constant C∗ depending only on f, PD, gN such
that

||| ph ||| ≤ C∗( f, PD, gN). (19)

In the rest of the paper, β will denote this value
of βh.

Let us point out that several primal discontinuous
Galerkin methods satisfy the assumption (11) as stated
in the remark below.

Remark 1

– The assumption (11) and (19) is fulfilled by almost
all primal discontinuous Galerkin methods, such as
NIPG, SIPG, and IIPG for sufficient large value
of the stability parameter σ > 0. This amount to
select β carefully such that Eq. 19 holds. This is an a
posteriori computation since that value may differ
from that used to compute the pressure.

– Because of the above constraint, we point out here
a primal DG formulation of problem (1) which
straightforwardly satisfy Eqs. 11 and 19. This for-
mulation which is studied in detail in Apoung
Kamga (submitted for publication) is given by:
{

seek ph ∈ Vk
h such that ∀qh ∈ Vk

h

Ah(ph, qh) = Lh(qh).
(20)

with

Ah(ph, qh) = B(ph, qh) − J(ph, qh) + εJ(qh, ph)

+ Jβh(ph, qh) + Hβh(ph, qh)

+ Hβh
BN(ph, qh), (21)

Lh(qh) = L(qh) + LN(qh) + JD(qh)

+ εJβh
D (qh) + Hβh

N (qh), (22)

where (ε = 1) for non-symmetric version and (ε =
−1) for symmetric version, and

J(p, q) =
∑

e∈ξ
′
h

∫

e
{(K∇ p) · ne}[[q]] dγ

+
∑

e∈ξD
h

∫

e
(K∇ p) · ne q dγ , (23)

Hβ

N(q) =
∑

e∈ξN
h

1

β

∫

e
gN(K∇q) · ne dγ , (24)

JD(q) =
∑

e∈ξD
h

∫

e
pD(K∇q) · ne dγ

Jβ

D(q) =
∑

e∈ξD
h

β

∫

e
pDq dγ , (25)

L(q) =
∑

E∈τh

∫

E
fq dx,

LN(q) =
∑

e∈ξN
h

∫

e
gNq dγ . (26)

4 Post-processing of the Darcy velocity

The lifting operators [10, 12–16, 18, 21–23] are the
common procedures to derive the approximate Darcy
velocity from the computed pressure. Because they
are designed to assure stability property to the DG
formulation of the pressure equation, they may not give
satisfactory velocity, unless high-order polynomials are
used when computing the pressure. However, for large
domain computation, this should be avoided since high-
order polynomials are more memory consuming. For
this reason, we propose some specific velocity recon-
structions, namely Eqs. 27, 31, and 37, based on penalty
approach. The presentation of these reconstructions
are organized as follows: We present in Section 4.1 the
first post-processing technique and its a priori error es-
timates and penalty parameter analysis. Progressively,
in Sections 4.2 and 4.3, we give two modifications of the
first reconstruction to make the computation less ex-
pensive and address their error estimates and stability
analysis.

4.1 First velocity reconstruction approach

To determine the Darcy velocity, we propose the fol-
lowing problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find uh ∈ 
k
h such that ∀vh ∈ 
k

h,
∑

E∈τh

∫

E
K−1uh · vh dx +

∑

e∈ξ
′
h

1

2α

∫

e
[[uh · ne]][[vh · ne]] dγ

+
∑

e∈ξN
h

1

α

∫

e
(uh · ne) (vh · ne) dγ

= −
∑

E∈τh

∫

E
vh · ∇ ph dx +

∑

e∈ξ
′
h

∫

e
[[ph]]{vh · ne} dγ

+
∑

e∈ξD
h

∫

e
(ph − pD)(vh · ne) dγ

−
∑

e∈ξN
h

1

α

∫

e
(gN)(vh · ne) dγ .

(27)
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Proposition 1 Let ph be a computed approximation of
the solution p ∈ Hs(τh), s ≥ 2 of Eq. 1 satisfying the
estimations (11). There exists a unique solution uh of
problem (27). Moreover, if u = −K∇ p and α = σk2

h ,
then there exists a constant C independent of h and k
such that

∑

E∈τh

‖u − uh‖2
0,E

≤ C
h2μ−2

k2s−3

⎛

⎝
∑

E∈τh

‖u‖2
s,E +

∑

E∈τh

‖p‖2
s,E

⎞

⎠ , (28)

∑

e∈ξ
′
h

‖[[(u − uh) · ne]]‖2
0,e +

∑

e∈ξN
h

‖(u − uh) · ne‖2
0,e

≤ C
h2μ−3

k2s−5

⎛

⎝
∑

E∈τh

‖u‖2
s,E +

∑

E∈τh

‖p‖2
s,E

⎞

⎠ , (29)

where μ = min(k + 1, s).

Proof See Appendix 1. ��

4.1.1 Estimation of the stability parameter

We address in this section the potential dependence of
the penalty parameter α with respect to the penalty pa-
rameter β. We claim here that there is no relationship
between the penalty parameter α, in the problem (27),
and the stability parameter β in Eq. 12. More precisely
the following holds:

Proposition 2 Let ph be the approximate solution of
Eq. 1 satisfying Eq. 11 and β the parameter in Eq. 12.
For any penalty parameter α in formulation (27), there
exists a constant C > 0 independent of β such that

∑

E∈τh

∫

E
K−1uh · uh dx +

∑

e∈ξ
′
h

1

α

∫

e
[[uh · ne]]2 dγ

+
∑

e∈ξN
h

1

α

∫

e
(uh · ne)

2 dγ ≤ CC∗( f, PD, gN). (30)

Proof See Appendix 5. ��

4.2 Second velocity reconstruction approach

It appears in formulation (27) that the resulting matrix
is not block-diagonal. A less computational effort will
be obtained if one can tune the formulation in order

to obtain a block-diagonal matrix where each diagonal
block is associated with a single cell. This is the aim
of this sub-section. After some trials, we propose the
following formulation:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find uh ∈ 
k
h such that ∀vh ∈ 
k

h
∑

E∈τh

∫

E
K−1uh · vh dx +

∑

e∈ξN
h

1

α

∫

e
uh · nevh · ne dγ

= −
∑

E∈τh

∫

E
vh · ∇ ph dx +

∑

e∈ξ
′
h

∫

e
[[ph]]{vh · ne} dγ

+
∑

e∈ξD
h

∫

e
(ph − pD)(vh · ne) dγ

−
∑

e∈ξN
h

1

α

∫

e
(gN)(vh · ne) dγ

−
∑

e∈ξ
′
h

1

2α

∫

e
[[−K∇ ph · ne]][[vh · ne]] dγ ,

(31)

where −K∇ ph denotes the Darcy velocity calculated
element-wise by simple differentiation.

This problem is well posed. In fact, we have the
following result:

Proposition 3 Let ph be a computed approximation of
the solution p ∈ Hs(τh), s ≥ 2 of Eq. 1 satisfying the
estimations (11). There exists a unique solution uh of
problem (31). Moreover, if u = −K∇ p and α = σk2

h ,
then there exists a constant C independent of h and k
such that

∑

E∈τh

‖u − uh‖2
0,E

≤ C
h2μ−2

k2s−3

⎛

⎝
∑

E∈τh

‖u‖2
s,E +

∑

E∈τh

‖p‖2
s,E

⎞

⎠ , (32)

∑

e∈ξ
′
h

‖[[(u − uh) · ne]]‖2
0,e +

∑

e∈ξN
h

‖(u − uh) · ne‖2
0,e

≤ C
h2μ−3

k2s−5

⎛

⎝
∑

E∈τh

‖u‖2
s,E +

∑

E∈τh

‖p‖2
s,E

⎞

⎠ , (33)

where μ = min(k + 1, s).

Proof See Appendix 2. ��

Remark 2

– The Darcy velocity can now be recovered by the
inversion of a block-diagonal matrix. This is a local-



Comput Geosci (2012) 16:93–122 99

in-the-cell process, which reduces the computa-
tional efforts.

– Because in Eq. 31 there is no interface stability
term in the left-hand side, the penalty parameter α

will undergo specific constraint; see Eq. 34, for the
right-hand-side term [[−K∇ ph]] not to pollute the
recovered velocity.

4.2.1 Estimation of the stability parameter

We address in this section the dependence of the
penalty parameter α with respect to the stability para-
meter β. We claim here that there is a specific relation-
ship between the penalty parameter α, in the problem
(31), and the stability parameter β in Eq. 12. More
precisely the following holds:

Proposition 4 Let ph be the approximate solution of
Eq. 1 satisfying Eq. 11 and β the parameter in Eq. 12.
Let α be the penalty parameter in formulation (31).

If there exists a constant σ0 > 0 suf f iciently large such
that

α ≥ σ0β, (34)

then there exists a constant C > 0 independent of β such
that

∑

E∈τh

∫

E
K−1uh · uh dx +

∑

e∈ξ
′
h

1

α

∫

e
[[uh · ne]]2 dγ

+
∑

e∈ξN
h

1

α

∫

e
(uh · ne)

2 dγ ≤ CC∗( f, PD, gN). (35)

Proof See Appendix 6. ��

Remark 3 We can refine the determination of parame-
ter σ0 as follows:

Define

κ = max
E∈τh

(k + 1)(k + d)

4λE
md

|∂ E|
|E| ,

with λE
m and d given in Section 2 by formula (3). If the

parameter β in Eq. 12 is selected in a way that there
exists a constant � > 0 such that

3β

4κ
− 1

�
> 0 then σ0 ≥ 1

√
3β

4κ
− 1

�

. (36)

For practical considerations, it is sufficient to take
α ≥ β.

4.3 Third velocity reconstruction approach

The remark above states that in the previous recon-
struction (Eq. 31), the penalty parameter has to be
chosen carefully so that the jumps of the normal deriva-
tives of the primal variable do not disturb the recovered
velocity. As an alternative, we now consider a particular
strategy which consists in splitting the penalty terms in
Eq. 27 while maintaining the recovery process element-
wise. The problem now reads
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find uh ∈ 
k
h such that ∀vh ∈ 
k

h, ∀E ∈ τh,

∫

E
K−1uh · vh dx + 1

2α

∫

∂ E∩∂ E′
uh · n vh · n dγ

+ 1

α

∫

∂ E∩�N

uh · n vh · n dγ

= −
∫

E
∇ ph · vh dx

− 1

2α

∫

∂ E∩∂ E′
(K′∇ p′

h) · n vh · n dγ

+1

2

∫

∂ E∩∂ E′
(ph − p′

h)vh · n dγ

+
∫

∂ E∩�D

(ph − pD) vh · n dγ

− 1

α

∫

∂ E∩�N

gN vh · n dγ ,

(37)

We can show the following:

Proposition 5 Let ph be a computed approximation of
the solution p ∈ Hs(τh), s ≥ 2 of Eq. 1 satisfying the
estimations (11). There exists a unique solution uh of
problem (37). Moreover, if u = −K∇ p and α = σk2

h ,
then there is a constant C independent of h and k such
that

∑

E∈τh

‖u − uh‖2
0,E

≤ C
h2μ−2

k2s−3

⎛

⎝
∑

E∈τh

‖u‖2
s,E +

∑

E∈τh

‖p‖2
s,E

⎞

⎠ , (38)

∑

e∈ξ
′
h

‖[[(u − uh) · ne]]‖2
0,e +

∑

e∈ξN
h

‖(u − uh) · ne‖2
0,e

≤ C
h2μ−3

k2s−5

⎛

⎝
∑

E∈τh

‖u‖2
s,E +

∑

E∈τh

‖p‖2
s,E

⎞

⎠ , (39)

where μ = min(k + 1, s).
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Proof See Appendix 3. ��

4.3.1 Estimation of the stability parameter

We address in this section the potential dependence of
the penalty parameter α with respect to the stability pa-
rameter β. We claim here that there is no relationship
between the penalty parameter α, in the problem (37),
and the stability parameter β in Eq. 12. More precisely
the following result holds:

Proposition 6 Let ph be the approximate solution of
Eq. 1 satisfying Eq. 11 and β the parameter in Eq. 12.
For any penalty parameter α in formulation (37), there
exists a constant C > 0 independent of β such that

∑

E∈τh

∫

E
K−1uh · uh dx +

∑

e∈ξ
′
h

1

α

∫

e
[[uh · ne]]2 dγ

+
∑

e∈ξN
h

1

α

∫

e
(uh · ne)

2 dγ ≤ CC∗( f, PD, gN). (40)

Proof See Appendix 7. ��

5 Numerical illustration

In this sub-section, we carry out a numerical test to
compare the Darcy velocity obtained in four manners
from the solution of the primal formulation (20).

The first is the simple local differentiation which
consists in determining uh in each element E ∈ τh by
the formula uh = −K∇ ph. It is favorable to write it in
the form
∫

E
K−1uh · vh dx

= −
∫

E
∇ ph · vh dx, ∀vh ∈ Pk(E). (41)

The second manner is given by Eq. 31, the third by
Eq. 27, and the fourth by Eq. 37.

We first start by the convergence error in L2 and in
L∞ norms of the normal jump. This is done in Section
5.1 and will validate the fact that each approximation
gives reasonable result as far as high-order polynomial
is used and the velocity remains smooth. In Section 5.2,
we carry out a comparison test which will make evident
the differences among all the mentioned reconstruc-
tions. This comparison is based on a graphical criterion:
If we represent graphically a velocity in each cell of
the mesh by plotting the vector of the velocity at each
vertex of the cell, each vertex of the mesh will receive

as vector as the total number of the cell containing that
vertex. Consequently, for an affine velocity, unless the
approximated velocity is well constructed, the repre-
sented vectors at each vertex will not coincide. This is
a well-defined criterion to check whether a good global
affine approximation of the velocity is obtained. This
section is closed in Section 5.4 by showing that whatever
the velocity reconstruction, a better computation of
the pressure is required, unless one may face specific
difficulties notably on boundary conditions of Dirichlet
type.

5.1 Numerical evaluation of the error estimate

To illustrate the numerical convergence, we consider
the test case with smooth solution as given in [7].
Consider � = (0, 1)2, �N = ∅. The permeability tensor
K is isotropic and constant, with value 1. We choose
the boundary conditions and the right-hand side such

that the exact solution of Eq. 1 is p = e−
(

(x− 1
2 )

2+(y− 1
2 )

2
)

.
We then compute the pressure p by formula (20) us-
ing different polynomial orders and the Darcy velocity
with formulae (41), (27), (31), and (37) using the same
polynomial order and the same stability parameter, i.e.,
α = σ

h with σ = 100. We then compute the L2 error
between the exact velocity and the velocity obtained
by the different reconstructions. The L2 error on the
normal component of the velocity is also computed as
max
e∈ξ

′
h

‖[[uh · ne]]‖0,e. To evaluate the convergence rate,

we start with a uniform mesh of the domain made
of 2 × 8 × 8 triangles and successively apply a dyadic
refinement of the mesh. We compute the rate for any

error eh by the formula ln
(

eh/e h
2

)
/ ln(2), where h is the

mesh size. The results for polynomials of orders 1, 2,
and 3 are reported in Tables 1 and 2.

We observe that all the reconstructions provide the
same convergence rate, and no differences are observed
when higher-order polynomials are used. In our test
case, this occurs when polynomial of orders 2 and 3
are used. To better observe the differences between the
above-mentioned reconstructions, we need a specific
test case. This is the aim of Section 5.2.

5.2 Comparison of the different approaches

While building the above-mentioned velocity recon-
structions, we aimed at the continuity of the normal
component along the interfaces between cells. Hence,
to better compare the provided reconstructions, we
now base our analysis on a graphical criterion. As the
Darcy velocity is approximated by totally discontinuous
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Table 1 Numerical L2 errors
and convergence rate
associated, for the different
velocity reconstructions with
first (P1)-, second (P2)-, and
third (P3)-order polynomials,
with parameters
α = σ

h , σ = 100

h−1 Formulation (41) Formulation (27) Formulation (31) Formulation (37)

Error Rate Error Rate Error Rate Error Rate

P1

8 7.598e−02 – 7.148e−02 – 7.121e−02 – 7.135e−02 –
16 3.802e−02 1.00 3.576e−02 1.00 3.562e−02 1.00 3.570e−02 1.00
32 1.901e−02 1.00 1.788e−02 1.00 1.781e−02 1.00 1.785e−02 1.00
64 9.507e−03 1.00 8.943e−03 1.00 8.908e−03 1.00 8.926e−03 1.00
128 4.753e−03 1.00 4.471e−03 1.00 4.454e−03 1.00 4.463e−03 1.00

P2

8 2.545e−03 – 2.249e−03 – 2.238e−03 – 2.257e−03 –
16 6.388e−04 1.99 5.645e−04 1.99 5.620e−04 1.99 5.670e−04 1.99
32 1.599e−04 2.00 1.414e−04 2.00 1.408e−04 2.00 1.420e−04 2.00
64 4.000e−05 2.00 3.537e−05 2.00 3.522e−05 2.00 3.555e−05 2.00
128 1.000e−05 2.00 8.847e−06 2.00 8.807e−06 2.00 8.891e−06 2.00

P3

8 9.344e−05 – 8.423e−05 – 8.280e−05 – 8.368e−05 –
16 1.167e−05 3.00 1.053e−05 3.00 1.035e−05 3.00 1.046e−05 3.00
32 1.458e−06 3.00 1.317e−06 3.00 1.293e−06 3.00 1.307e−06 3.00
64 1.822e−07 3.00 1.646e−07 3.00 1.616e−07 3.00 1.634e−07 3.00
128 2.278e−08 3.00 2.257e−08 2.87 2.020e−08 3.00 2.043e−08 3.00

polynomials, we represent for each triangle, the local
velocity vector at its middle edges. Therefore, on an
internal edge, two vectors are displayed. For the test
carried out, these two vectors should coincide. Indeed,
the test will be selected so that the exact velocity is
linear on a part of the domain and almost null on the
rest of the domain.

To better observe the differences between the three
approaches, we start with a pressure (ph) obtained by
a first-order approximation for which a simple local
differentiation would give a constant velocity in each
element. We then plot the magnitude of the velocity
obtained by each reconstruction. Our comparison cri-

terion is based of the fact that if the velocity is piece-
wise constant, the representation will show a piecewise
constant color in each cell.

We now specify the test carried out. Consider �̄ =
�̄1 ∪ �̄2, with �1 = (−1, 0) × (−1, 1) and �2 = (0, 1) ×
(−1, 1). The permeability tensor K is isotropic and
constant in �1 and �2 where these constants are K1 = 1
and K2 = 10−4, respectively. Let us choose the bound-
ary conditions and the right-hand side function such
that p(x, y) = x2 + y2 is the exact solution. The domain
is equipped with a uniform grid made of 2 × 10 × 10
triangles. On each edge e, we take α = σ/|e| with σ =
10. We take first-order polynomials to approximate the

Table 2 Numerical
evaluation of
maxe∈ξ

′
h
‖[[uh · ne]]‖0,e and its

convergence rate for the
different velocity
constructions, for first (P1)-,
second (P2)-, and third
(P3)-order polynomials, with
parameters α = σ

h , σ = 100

h−1 Formulation (41) Formulation (27) Formulation (31) Formulation (37)

Error Rate Error Rate Error Rate Error Rate

P1

8 8.504e−02 – 8.023e−02 – 7.994e−02 – 8.009e−02 –
16 3.048e−02 1.48 2.876e−02 1.48 2.865e−02 1.48 2.871e−02 1.48
32 1.082e−02 1.49 1.020e−02 1.49 1.017e−02 1.49 1.019e−02 1.49
64 3.827e−03 1.50 3.611e−03 1.50 3.598e−03 1.50 3.604e−03 1.50
128 1.353e−03 1.50 1.277e−03 1.50 1.272e−03 1.50 1.274e−03 1.50

P2

8 1.610e−03 – 1.227e−03 – 1.188e−03 – 1.205e−03 –
16 2.925e−04 2.46 2.150e−04 2.51 2.068e−04 2.52 2.107e−04 2.52
32 5.260e−05 2.48 3.837e−05 2.49 3.681e−05 2.49 3.759e−05 2.49
64 9.380e−06 2.49 6.858e−06 2.48 6.582e−06 2.48 6.719e−06 2.48
128 1.666e−06 2.49 1.219e−06 2.49 1.171e−06 2.49 1.195e−06 2.49

P3

8 1.499e−04 – 1.264e−04 – 1.212e−04 – 1.241e−04 –
16 1.355e−05 3.47 1.142e−05 3.47 1.096e−05 3.47 1.121e−05 3.47
32 1.204e−06 3.49 1.015e−06 3.49 9.741e−07 3.49 9.968e−07 3.49
64 1.066e−07 3.50 8.988e−08 3.50 8.622e−08 3.50 8.823e−08 3.50
128 9.424e−09 3.50 7.97e−09 3.50 7.623e−09 3.50 7.801e−09 3.50
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pressure using Eq. 20 and construct the Darcy velocity
by each of the four above-mentioned approaches.

Figure 1 displays the computed velocity fields. It
represents graphically the velocity vectors in the middle
edge of each element. Namely, two vectors are drawn
at the middle point of each internal edge of the mesh,
each from inside the adjacent elements. In an affine
approximation of the velocity, these two vectors must
coincide.

Observations

1. For this test case, the three suggested recon-
structions are better than the simple local differ-

entiation, in the sense that the angles between the
vectors on an internal edge are smaller and their
modules are less different.

2. At any interface, the normal component of the
velocity obtained by the second reconstruction is
less continuous than the one obtained by the first
reconstruction.

3. One notes from Fig. 2, which represents the mag-
nitude of the velocity, that the third construction
approaches much more simple construction, while
providing a velocity which is almost element-wise
linear. It represents a better P1 reconstruction.

4. If the stability parameter is selected too large, the
various reconstructions provide an almost identical

(a) (b)

(c) (d)

Fig. 1 Darcy’s velocity built from P1 pressure approximation
with a permeability ratio K1

K2
= 10−4. The fields are obtained by

graphically drawing the Darcy velocity vector in the middle edges
of each element. a Field for simple differentiation reconstruction

(Eq. 41). b Field for first reconstruction (Eq. 27). c Field for
second reconstruction (Eq. 31). d Field for third reconstruction
(Eq. 37)
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(b)(a)

(d)(c)

Fig. 2 P1—the magnitude of the Darcy velocity built from P1

pressure approximation, for a permeability ratio of K1
K2

= 10−4.
a Magnitude for simple reconstruction (Eq. 41); b magnitude for

reconstruction (Eq. 27); c magnitude for reconstruction (Eq. 31);
d magnitude for reconstruction (Eq. 37)

result. Because in this case, the continuity of the
solution at the interfaces between elements is re-
inforced, making the approximation “almost” con-
formal. We know that in such an approximation,
the degree of the polynomial for approximating the
velocity must be one unit lower than that of the
pressure.

5. If the stabilization makes the primal problem al-
most conformal, a better reconstruction strategy
is either to increase the order of the polynomial
approximation or to resort to post-processing using
other finite element types, when these are applica-
ble (see [7, 19]). However, the first reconstruc-
tion of the velocity can be viewed as a penalty,
with jumps, of the simple local differentiation; the
penalty parameter can therefore be different from
that used to solve the primal formulation. Conse-
quently, the penalty parameter can be adjusted in
formulation (27) in order to recover the velocity
with a more continuous normal component at the
interface between elements. As an illustration, let
us run once more the previous test case with a

penalty parameter ten times smaller on internal
edges of the triangles. The graphical output is
shown in Fig. 3. It can be observed that the continu-
ity of the Darcy velocity at the interfaces between
cells is better. Since the exact velocity is affine over
the domain �, it also appears that the reconstructed
velocity is a better affine approximation of the
exact velocity.

5.3 The penalty parameter adjusted in formulation (27)

In this subsection, we numerically show that the con-
vergence rate of the method is not destroyed by ad-
justing the penalty parameter when the Darcy velocity
is derived by formulation (27). We have already seen
that this can improve the continuity of the normal
component of the velocity. By running again the pre-
vious graphical test case with a more smaller penalty
parameter α in Eq. 27, we observe in Fig. 3 that a better
continuity of the normal component of the velocity at
interfaces between cells is achieved.
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Fig. 3 The field (left) and the magnitude (right) of the Darcy ve-
locity for reconstruction (Eq. 27) with σ = 10 on Dirichlet edges
and σ = 1/10 on internal edges, obtained by a P1 approximation
of pressure using Eq. 20 with a permeability ratio K1

K2
= 10−4 and

σ = 10 on all edges. The velocity field is represented by drawing
a vector on the middle edge of any element, from inside that
element

We also carry out the convergence test case of the
previous subsection, Section 5.2. The pressure is still
obtained from Eq. 20 with a stability parameter taken
to be βh = σ k2

h with σ = 10. But the velocity is now
computed by using Eq. 27 with an adjusted penalty pa-
rameter αh. Namely, αh = σ k2

h with σ = 10 on boundary
faces and σ = 1/10 on internal faces. The results are
displayed in Table 3. Although the convergence rate is
almost identical to that of Table 2, the error is smaller.
More precisely we make the following observations:

– For first-order polynomials, the convergence rate
in L2 norm now starts at 3

2 instead of 1 previously
obtained and decreases to 1 very slowly as the
mesh is refined. Also, the error in the jump of
the normal component of the velocity is 75 times
smaller. Consequently, this method is suited for
coarse meshes and low-order polynomials. These

are exactly the situations where the global nature
of the reconstruction is not too costly.

– Concerning polynomials of order 2, although the
convergence rate is the same, the error in L2 norm
is twice smaller and the error in the jump of the
normal component is 50 times smaller.

– With polynomials of order 3, the same order of
convergence is observed. However, the error in L2

norm is 1.5 times smaller, and the error in the jump
of the normal components of the velocity is 150
times smaller.

Unfortunately there is no general criterion for quanti-
fying the gain when the penalty parameter is adjusted.
The conclusion drawn is that the penalty parameter ad-
justment in formulation (27) can improve substantially
the error on the jumps of the normal components of the
velocity.

Table 3 Numerical L2 errors
and maxe∈ξ

′
h
‖[[uh · ne]]‖0,e and

convergence rates associated
with reconstruction (27) when
the penalty parameter
αh = σ k2

h with σ = 10 on
boundary edges and σ = 1/10
on internal edges and first
(P1)-, second (P2)-, and third
(P3)-order polynomials are
used

h−1 P1 P2 P3

Error Rate Error Rate Error Rate

‖u − uh‖0,�

8 7.997e−03 – 1.274e−03 – 5.698e−05 –
16 2.528e−03 1.66 3.157e−04 2.01 7.091e−06 3.01
32 8.489e−04 1.57 7.869e−05 2.00 8.849e−07 3.00
64 3.027e−04 1.49 1.965e−05 2.00 1.105e−07 3.00
128 1.148e−04 1.40 4.910e−06 2.00 1.406e−08 2.97

maxe∈ξ
′
h
‖[[uh · ne]]‖0,e

8 1.197e−03 – 2.796e−05 – 8.583e−07 –
16 4.273e−04 1.49 5.057e−06 2.47 7.727e−08 3.47
32 1.514e−04 1.50 9.013e−07 2.49 6.861e−09 3.49
64 5.357e−05 1.50 1.598e−07 2.50 6.072e−10 3.50
128 1.894e−05 1.50 2.829e−08 2.50 5.436e−11 3.48
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5.4 The impact of the approximation of the pressure

In this section, we would like to highlight one important
issue which is the impact of the poor pressure approx-
imation in the post-processing of the Darcy velocity.
We claim that if the boundary condition is not well
enforced when solving the pressure equation, this may
lead to an oscillation of the computed velocity in the
cells connected to that part of the boundary.

To make this asset more evident, let us consider
problem (1) with constant permeability K(x, y) = 1
a Dirichlet boundary condition on the whole bound-
ary of � =]0, 1[×]0, 1[. The right-hand side and the
boundary condition are such that the exact solution
is p(x, y) = x2 + y2. With a locally refine quadrilateral
mesh around the bottom left corner (0, 0), we compute
the pressure by the same primal DG formulation (20)
but with different penalty parameter when enforcing
the Dirichlet boundary condition: For the first one,
we take βh = 10/h, and for the second one, we take
βh = 100/h. Then for each of the computed pressure,
we compute the velocity using formulation (27) with the
same penalty parameter (αh = 10−4/h). The results are
displayed in Fig. 4.

Since the expected velocity over the domain is
v(x, y) = (−2x, −2y), we can draw the following con-
clusion: Even though the poor approximation of the
pressure ph might not affect the normal component
of the computed velocity, it considerably affect the
value of the velocity inside cells. Luckily, the affected
ones are only boundary cells closed to the Dirichlet
boundary where the pressure was badly approximated.
Consequently, the error due to bad approximation of
the pressure at the boundary of a particular cell does
not propagate outside that cell as far as the global
property of the velocity is concerned, such as global
constancy or global linearity.

6 Comparison with other post-processing

In this section, we perform more numerical tests to
compare the proposed reconstructions with available
post-processing methods. We start situating our ap-
proaches into family of DG method in Section 6.1.
We then compare our approaches to projection into
conformal spaces in Section 6.2. We conclude by

Velocity for Ph(100)

Velocity for Ph(100)Ph(10)

Ph(100)

Fig. 4 P1 Darcy velocity for two different origins of pressure:
first line P1 pressure with Dirichlet penalty parameter σ = 10
(denoted Ph(10)). Second line P1 pressure with Dirichlet penalty
parameter σ = 100 (denoted Ph(100)). The pressure is obtained

using DG formulation from Eq. 20. The plot of the velocity is
obtained by drawing one vector at each vertex of each element,
from inside that element
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evaluating our approaches on general meshes and a
non-isotropic problem in Section 6.3.

6.1 Connection with other discontinuous Galerkin
methods

The formulations (27) and (37), at a first sight, look
like available post-processing techniques in the mixed
DG formulation. However, this is not the case and
consequently ensures the novelty of our proposed post-
processing. Let us highlight it in more details.

For the sake of simplicity, we assume here that
K = I, and consequently, the velocity needed to be
approximated is u = −∇ p. In the DG theory, see for
instance [4, 23], the equation for defining the velocity is
formulated as: seek uh ∈ 
k

h such that for all vh ∈ 
k
h

∫

�

uh · vh dx =
∫

�

ph(∇ · vh)dx

−
∑

E∈τh

∫

∂ E
p̂E(vh · nE)dγ, (42)

where p̂ is the pressure flux to be defined appropriately.
Various choices are available as listed in Table 4 below
(see [4] for more details).

As it is straightforward, none of these methods pro-
poses the penalty approach for computing the velocity.
On contrary, each of our proposed methods, namely
Eqs. 27, 31, and 37, proposes a penalty approach. This
can be seen by rearranging terms in each of them, which
results on internal edges only to the Table 5.

However, as we have pointed out, the quality of
the approximation of the pressure is important. The
LDG method and most mixed DG method achieve this
good quality approximation of the pressure by instead
working on the complementary equation associated to
Eq. 42 (see references [4, 23] for more details). Since
our formulations work well whatever the origin of the

Table 4 Various selections of p̂ in the discontinuous Galerkin
methods

Method p̂E on e = ∂ E ∩ ∂ E′

Bassi–Rebay {ph}
Brezzi et al. 1 {ph}
LDG {ph} − (γ · nE)[[ph]]
IP {ph}
Bassi et al. {ph}
Baumann–Oden {ph} + [[ph]]
NIPG {ph} + [[ph]]
Babuska–Zlamal (ph|E)|∂ E

Brezzi et al. 2 (ph|E)|∂ E

As reviewed in [4]. The jump is from internal to external

Table 5 Analog value for p̂ in our penalty formulation, with E′
the neighboring cell of E, nE is the outward unit normal at the
boundary of E and the jump is from inside to outside of the
element E

Method p̂E on e = ∂ E ∩ ∂ E′

First (Eq. 27) {ph} + 1
α
[[uh]] · nE

Second (Eq. 31) {ph} − 1
α
[[∇ ph]] · nE

Third (Eq. 37) {ph} + 1
α

((uh|E) + (∇ ph|E′ )) |∂ E · nE

pressure, the pressure from LDG formulation will only
be beneficial and will keep us from the problem men-
tioned in Section 5.4.

6.2 Comparison against some projections
into conformal spaces

We are aware of two conformal H(div) projections,
namely the local projection into the BDM space [7]
and the projection into the Raviart Thomas (RT) space
[19]. We are also aware of the Zienkiewicz and Zhu
projection [32]. This projection is known to be optimal.
But its purpose is to construct a velocity such that
each component falls in the conformal Lagrange finite
element on the given mesh, with better approximated
nodal values. This is achieved by introducing specific
macro-element around each nodal point and careful
selections of interpolation points (quadrature points)
for the least squares problem. Although this method
gives a good result at nodal points, is not constructed in
view of achieving the continuity of the normal compo-
nent of the velocity. We are not aware of its extension
to general distorted meshes, with dangling nodes. Its
implementation is not straightforward because the se-
lection of the interpolation points for the least squares
problem is not obvious for high-order polynomials (see
[32]). For these reasons, we have not implemented the
method, but we advocate that it will be interesting to
see how it can be extended on general meshes and how
it behaves on full anisotropic permeability tensor.

Because BDM and RT spaces are related to confor-
mal approximation, their extension to general meshes is
either not straightforward or almost impossible in gen-
eral. Consequently, in this sequel, we will consider only
triangular meshes. We refer to [7, 19] for the detailed
definition of these projections; however, we remind
that attention should be paid at the implementation
level as highlighted below.

In all the numerical experiments presented in this
section, on contrary to [19], where it is advised to use
the exact flux from the primal formulation, we make the
choice, as in [7] to use the mean value of the velocity
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Fig. 5 Profile of the velocities along the line x = 0.5, for the test case of Section 6.2.1. On the left the first component, on the right the
second component

obtained by direct differentiation. Consequently, we
will define these projections as follows: Let uDG be the
DG velocity obtained by direct differentiation in each
cell of the mesh. The projection of [7] which we will
denote BDM is defined on each element E with edges
ei, i = 1, 2, 3, by Eq. 43, while the projection of [19],
which we will denote RT, is given by Eq. 44

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find u∗ ∈ (Pk−1(E))2 :
∫

ei

(
u∗ − {uDG}) · neiw dγ = 0, ∀w ∈ Pk−1(ei),

∫

E

(
u∗ − uDG

) · ∇w dx = 0, ∀w ∈ Pk−2(E),
∫

E

(
u∗ − uDG

) · S(w) dx = 0, ∀w ∈ Mk(E).

(43)

where S(w) = ( ∂w
∂y , − ∂w

∂x ) and Mk(E) is the space of
polynomials vanishing on the boundary of E

Mk(E) = {v ∈ Pk(E) : v|∂ E = 0} ≡ λ1λ2λ3Pk−3(E),

where λi, i = 1, 2, 3 are the barycentric coordinates.

⎧
⎪⎨

⎪⎩

Find u∗ ∈ RTk−1(E) :
∫

ei

(
u∗ − {uDG}) · neiw dγ = 0, ∀w ∈ Pk−1(ei),

∫

E

(
u∗ − uDG

) · w dx = 0, ∀w ∈ (Pk−2(E))2 .

(44)

where RTk(E) = P2
k(E) ⊕ (x, y)Pk(E).

Let us point out some difficulties that make the
implementation not so easy:

– In Eq. 43, the space Pk−2(E) should be understood
as Pk−2(E) \ P0(E).

– In Eq. 44, some implementation tricks are needed
to fulfill the direct sum: RTk(E) = P2

k(E) ⊕
(x, y)Pk(E).

All this make the implementation of the projection
not only straightforward but also complicated or almost

Computed pressureInput mesh

Fig. 6 Mesh and the pressure solution for the Couplex I problem



108 Comput Geosci (2012) 16:93–122

Vx profile Vy profile

Fig. 7 Profiles of the velocity along the vertical line x = 50 for the Couplex I problem, using various post-processing
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Fig. 8 Profiles of the velocity along the vertical line x = 12,500 for the Couplex I problem, using various post-processing
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Fig. 9 Profiles of the velocity along the vertical line x = 20,000 for the Couplex I problem, using various post-processing
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Fig. 10 Input meshes for testing the behavior of Darcy velocity post-processing

impossible on general distorted meshes with dangling
nodes. Let us also point out that Raviart Thomas space
is unstable on distorted meshes see [24].

However, these projections are advised when
working with conformal meshes. They are highly rec-
ommended. But because their extensions to non-
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Fig. 11 Profile of the horizontal component of the computed velocity on 20 equally distributed points on the vertical line x = 0.5. The
solution using P2 polynomial and direct differentiation is displayed for comparison
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Table 6 L2-norm and jump
of the normal component of
the velocity for various
reconstructions, using P1
polynomials

The pressure is computed
using also P1 polynomials

Mesh5 mesh6 mesh7 mesh8 mesh9

max
e∈ξ

′
h

‖[[uh · ne]]‖0,e

1.897e−01 1.330e−01 1.330e−01 9.606e−02 5.805e−01 Simple
5.703e−03 7.093e−03 7.094e−03 5.641e−04 6.269e−03 RealGlob
3.113e−01 1.918e−01 1.918e−01 1.019e−01 3.617e−01 ModLoc
1.654e−01 1.081e−01 1.081e−01 8.173e−02 5.687e−01 RealLoc

‖u − uh‖0,�

1.449e−01 1.139e−01 1.134e−01 8.047e−02 3.810e−01 Simple
1.559e−01 1.091e−01 1.083e−01 1.111e−02 2.363e−01 RealGlob
1.856e−01 1.362e−01 1.349e−01 7.841e−02 3.170e−01 ModLoc
1.279e−01 7.634e−02 7.494e−02 5.419e−02 3.508e−01 RealLoc

conformal meshes are not straightforward, the penalty
approaches presented in the present paper are wel-
come. The penalty approaches are not only comparable
to conformal projection on conformal meshes but they
apply also on non-conformal and distorted meshes, as
shown in Sections 6.2.1 and 6.2.2,

6.2.1 Comparison on a simple domain �

We consider the test case of Section 5.2, but now
with �1 = (0, 0.5) × (0, 1) and �2 = (0.5, 1) × (0, 1).
The pressure is computed using symmetric version
of Eq. 20, with stability parameter βh = σ/|e| with
σ = 180 and second-order polynomials. The velocity is

then computed using formula 41 named here (Simple),
Eq. 27 named here (RealGlob), Eq. 31 named here
(ModLoc), Eq. 37 named here (RealLoc), formula (43)
named here (BDM), and Eq. 44 named here (RT).
The penalty parameter is taken αh = βh/100 except for
Eq. 31 where αh = βh.

We compute the profile of the velocity along the line
x = 0.5 with 20 equally distant points. We display the
x-coordinate and the y-coordinate of the velocity on
Fig. 5. We see that for these selections of parameters,
all the reconstructions are at worst equivalent to the
direct differentiation, while all of our proposed recon-
structions, except the Eq. 31, are comparable to local
H(div) projections. Note that because the parameter in
the primal formulation is selected large βh = σ/|e| with
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Fig. 12 Profile of the vertical component of the computed velocity on 20 equally distributed points on the vertical line x = 0.5. The
solution using P2 polynomial and direct differentiation is displayed for comparison
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σ = 180, the constraint Eq. 34 brings the formulation
(31) close to Eq. 41 which explains the similar behavior
in Fig. 5.

6.2.2 Comparison on a more complicated domain �

In this section, we consider the hydrodynamic problem
of Couplex I (see [6, 8]). For the input mesh, see
Fig. 6; the mesh size is h = 1,005.36 m. We compute
the pressure using our formulation 20, with third-order
polynomial, and stability parameter βh = σ/|e|, with
σ = 100 × 1005.36 × 4. The result is displayed in Fig. 6.

The velocity is then post-processed as above. The
penalty parameter is selected as follows: For formula-
tion 31, we take αh = βh, while for the others, we take
αh = βh × 10−7.

The profiles of the first and second components of
the velocity along three vertical lines are displayed in

Figs. 7, 8, and 9. We observe some small oscillations
on the right picture of Fig. 7, which disappear as the
polynomial order grows. It might be due to the approx-
imation of the pressure. However, these computations
show for this difficult problem a comparative behavior
of our formulation with local projection into conformal
H(div) spaces.

6.3 Evaluation on distorted meshes with anisotropic
tensors

Let us now observe the behavior of the proposed re-
constructions for an anisotropic problem over a domain
equipped with distorted and not necessary conformal
meshes. These situations can occur in porous media
because of the tectonic movement of soil. These are
sample problems for which the application of local
H(div) projection like those described above are, to
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Fig. 13 Profile of the computed velocity on 20 equally distributed points on the vertical line x = 0.5. The solution using P3 polynomial
and the direct differentiation is displayed for comparison
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our knowledge, either not straightforward or impossi-
ble. Recall that the BDMk or RTk spaces require a
conformal meshes, which need not be distorted (see the
explanation in [24]). This is why in this section, we only
consider the reconstructions presented in this paper,
namely RealGlob (see Eq. 27), ModLoc (see Eq. 31),
and RealLoc (see Eq. 37) and occasionally the direct
differentiation (see Eq. 41 identified as (Simple)).

The considered domain � is meshed as depicted
in Fig. 10. The permeability tensor is given in each
case. The boundary condition is only of Dirichlet, when
the exact solution is supply the right-hand side and
the boundary conditions are obtained from the exact
solution. The permeability tensor is given by

K(x, y) = 1

(x2 + y2)

(
εx2 + y2 (ε − 1)xy
(ε − 1)xy x2 + εy2

)

, (45)

with ε = 10−3. The right-hand side and the Dirich-
let boundary condition are obtained from the exact
solution p(x, y) = sin(πx) sin(πy). This problem is
known to induce numerical locking for some schemes.

The pressure is once again computed using formula-
tion 20, with parameter βh = 100/|e|, and the velocity
is obtained as above with parameter αh = βh × 10−4 ex-
cept for the constrained reconstruction where we take
αh = βh. As Fig. 11 shows, it is better to stay on first-
order polynomials to observe the differences. Hence,
we use only first-order polynomials (quadratic in this
sequel), and for all the meshes, we display in Table
6 the jump of the normal component of the velocity
and the error in L2-norm on the computed velocity.
We also display in Figs. 12 and 13 the profile of the
velocity on the vertical line passing in the middle of the
domain.

As it is clearly apparent, the reconstruction
(RealGlob), i.e., Eq. 27, is the best among the proposed
reconstructions, with only first-order polynomial; the
result is close to direct differentiation of second-order
polynomial. The second best reconstruction for the
consider problem is (RealLoc), i.e., Eq. 37; it is the
one which furnishes solutions which are the closest
to Eq. 27. As before, reconstruction (Eq. 31) is more
close to direct differentiation because of the penalty
parameter constraint here.

7 Conclusion

We have provided three techniques for computing
the Darcy velocity: Eqs. 27, 31, and 37. They are
particular stabilizations of the simple local-to-one-cell
differentiation technique but designed to perform bet-
ter in unfavorable cases of large computing where the

computer resources do not allow for high-order polyno-
mial approximations. All methods are shown to ensure
optimal convergence order. Moreover, we have made
the following observations, depending on whether the
main concern is efficiency or memory limitation:

1. Formulation (27) is the best in accuracy, since its
stabilization parameter can be adjusted to obtain
better Darcy velocity. However, it is rather memory
consuming because it does not provide decoupled
block diagonal matrix. It is advisable to use this
formulation when the size of the problem is not
too large. It is of great interest when using parallel
distributed memory programming.

2. Unlike formulation (27), formulation (31) provides
a block diagonal matrix, which ensures local-in-the-
cell computation of the Darcy velocity. It provides
the best result for certain stability parameters. Un-
fortunately, the determination of this particular sta-
bility parameter is not available. Its specific feature
is that it requires to be above a threshold stability
parameter, whose value is provided (see Eq. 36).

3. The third reconstruction (Eq. 37) lies in be-
tween the two above-mentioned reconstructions
and shares the properties of both. It provides a
block-diagonal matrix as does Eq. 31 and exhibits
no constraint on the stability parameter as does Eq.
27. We highly recommend this formulation if the
size of the problem is big or should be adjusted
dynamically.

Beside this, all the presented velocity reconstructions
are designed completely decoupled from the pressure
equations because they are specific penalty of the con-
tinuous lifting operator at the discrete level. However,
here like in general reconstructions, a poor pressure ap-
proximation can deteriorate the post-processed Darcy
velocity.
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Appendix 1: Proof of Proposition 1

Proof of Proposition 1 Let

G(u, v) =
∑

E∈τh

∫

E
K−1uv dx +

∑

e∈ξ
′
h

1

2α

∫

e
[[u · ne]][[v · ne]] dγ

+
∑

e∈ξN
h

1

α

∫

e
(u · ne)(v · ne) dγ , (46)
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F(p; v) = −
∑

E∈τh

∫

E
v · ∇ p dx +

∑

e∈ξ
′
h

[[p]]{v · ne} dγ

+
∑

e∈ξD
h

p(v · ne) dγ . (47)

Existence and uniqueness of the discrete velocity The
space 
k

h is of finite dimension. Hence, it suffices to
show the uniqueness of the solution. Let v ∈ 
k

h be

such that G(v, v) = 0. Therefore,
∑

E∈τh

∫

E
(K−1v) · v dx =

0. Since K is elliptic, so does K−1. Consequently,
||v||20,E = 0 ∀ E ∈ τh and v ≡ 0.

Error estimates Denote η = u − û and ζ = û − uh,
where û is an interpolation of u satisfying for each
component the relation (10) given by the Lemma 2. We
have

G(ζ, ζ ) = −G(η, ζ ) + G(u, ζ ) − G(uh, ζ )

= −G(η, ζ ) − F(p − ph; ζ ), (48)

which implies

|G(ζ, ζ )| ≤ |G(η, ζ )| + |F(p − ph; ζ )|. (49)

Therefore, applying the triangular inequality, we get

|G(η, ζ )| ≤ A1 + A2 + A3,

|F(p − ph; ζ )| ≤ L1 + L2 + L3, (50)

where Ai, Li, i = 1, 2, 3 are given below. Using the al-
gebraic inequality ab ≤ εa2 + 1

4ε
b 2, which is true for

any real numbers a, b , and ε > 0, they are bounded as
follows:

A1 =
∑

E∈τh

∫

E
|(K−1η) · ζ | dx ≤ c1

∑

E∈τh

‖η‖0,E‖ζ‖0,E

≤ c1ε1

∑

E∈τh

‖ζ‖2
0,E + c1

4ε1

∑

E∈τh

‖η‖2
0,E, (51)

A2 =
∑

e∈ξ
′
h

1

2α

∫

e
|[[η · ne]][[ζ · ne]]| dγ

≤ ε2

∑

e∈ξ
′
h

1

2α
‖[[ζ · ne]]‖2

0,e + 1

4ε2

∑

e∈ξ
′
h

1

2α
‖[[η · ne]]‖2

0,e,

(52)

A3 =
∑

e∈ξN
h

1

α

∫

e
|(η · ne)(ζ · ne)| dγ

≤ ε3

∑

e∈ξN
h

1

α
‖(ζ · ne)‖2

0,e + 1

4ε3

∑

e∈ξN
h

1

α
‖(η · ne)‖2

0,e,

(53)

L1 =
∑

E∈τh

∫

E
|ζ · ∇(p − ph)| dx

≤ ε4

∑

E∈τh

‖ζ‖2
0,E + 1

4ε4

∑

E∈τh

‖p − ph‖2
1,E, (54)

L2 =
∑

e∈ξ
′
h

∫

e

√
α

2
|[[p − ph]]|

√
2

α
|{ζ · ne}| dγ

≤ ε5

∑

e∈ξ
′
h

2

α
‖{ζ · ne}‖2

0,e + 1

4ε5

∑

e∈ξ
′
h

α

2
‖[[p − ph]]‖2

0,e,

(55)

L3 =
∑

e∈ξD
h

∫

e

√
α|p − ph|

√
1

α
|ζ · ne| dγ

≤ ε5

∑

e∈ξD
h

1

α
‖ζ · ne‖2

0,e + 1

4ε5

∑

e∈ξD
h

α‖[[p − ph]]‖2
0,e.

(56)

Since the trace inequality (9) provides ‖q‖2
0,e ≤

c k2

h ‖q‖2
0,E, by using the inequality (a + b)2 ≤ 2a2 + 2b 2,

we get

∑

e∈ξ
′
h

2

α
‖{ζ · ne}‖2

0,e +
∑

e∈ξD
h

1

α
‖ζ · ne‖2

0,e

≤ c2
k2

h
1

α

∑

E∈τh

‖ζ‖2
0,E.

Consequently,

|G(ζ, ζ )| ≤ A1 + A2 + A3 + L1 + L2 + L3

≤
(

c1ε1 + ε4 + ε5c2
k2

h
1

α

) ∑

E∈τh

‖ζ‖2
0,E

+ ε2

∑

e∈ξ
′
h

1

2α
‖[[ζ ·ne]]‖2

0,e + ε3

∑

e∈ξN
h

1

α
‖(ζ ·ne)‖2

0,e

+ c1

4ε1

∑

E∈τh

‖η‖2
0,E + 1

4ε2

∑

e∈ξ
′
h

1

2α
‖[[η · ne]]‖2

0,e

+ 1

4ε3

∑

e∈ξN
h

1

α
‖(η · ne)‖2

0,e

+
(

1

4ε4
+ 1

4ε5
+ 1

4ε5

)

||| p − ph |||. (57)
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Using the elliptic property of K (see Eq. 2), we get

1

λM

∑

E∈τh

‖ζ‖2
0,E +

∑

e∈ξ
′
h

1

2α
‖[[ζ · ne]]‖2

0,e

+
∑

e∈ξN
h

1

α
‖(ζ · ne)‖2

0,e ≤ |G(ζ, ζ )|. (58)

Then Eq. 57 implies

(
1

λM
− c1ε1 − ε4 − ε5 c2

k2

h
1

α

) ∑

E∈τh

‖ζ‖2
0,E

+ (1 − ε2)
∑

e∈ξ
′
h

1

2α
‖[[ζ · ne]]‖2

0,e

+ (1 − ε3)
∑

e∈ξN
h

1

α
‖(ζ · ne)‖2

0,e

≤ c1

4ε1

∑

E∈τh

‖η‖2
0,E + 1

4ε2

∑

e∈ξ
′
h

1

2α
‖[[η · ne]]‖2

0,e

+ 1

4ε3

∑

e∈ξN
h

1

α
‖(η · ne)‖2

0,e

+
(

1

4ε4
+ 1

4ε5
+ 1

4ε5

)

||| p − ph |||2. (59)

Then, by choosing α = σk2

h and εi > 0, i = 1, . . . , 5 such

that

⎧
⎪⎨

⎪⎩

(
1

λM
− c1ε1 − ε4 − ε5c2

σ

)
> 0,

1−ε2
σ

> 0,
1−ε3

σ
> 0,

which is possible

provided that

⎧
⎨

⎩

c1ε1 = ε4 = ε5
c2
σ

= 1
6λM

,

ε2 = 1
2 ,

ε3 = 1
2 ,

, it turns out

that there are constants Ci > 0, i = 1, . . . , 6 indepen-
dent of k and h such that

C1

∑

E∈τh

‖ζ‖2
0,E + C2

∑

e∈ξ
′
h

h
k2

‖[[ζ · ne]]‖2
0,e

+ C3

∑

e∈ξN
h

h
k2

‖(ζ · ne)‖2
0,e

≤ C4

∑

E∈τh

‖η‖2
0,E

︸ ︷︷ ︸
T1

+ C5

∑

e∈ξ
′
h

h
k2

‖[[η · ne]]‖2
0,e

︸ ︷︷ ︸
T2

+ C5

∑

e∈ξN
h

h
k2

‖(η · ne)‖2
0,e

︸ ︷︷ ︸
T3

+ C6||| p − ph |||2
︸ ︷︷ ︸

T4

. (60)

Consequently, by the approximation result given by
Lemma 2, it follows that

T1 + T2 + T3 ≤ C
h2μ−2

k2s−3

∑

E∈τh

‖u‖2
s,E.

It remains to bound T4. To this end, we make use of the
error estimates given by Eq. 11 to get

T4 ≤ C
h2μ−2

k2s−3

∑

E∈τh

‖p‖2
s,E.

Hence,

C1

∑

E∈τh

‖ζ‖2
0,E ≤ C

h2μ−2

k2s−3

⎛

⎝
∑

E∈τh

‖u‖2
s,E +

∑

E∈τh

‖p‖2
s,E

⎞

⎠ ,

(61)

C2

∑

e∈ξ
′
h

h
k2

‖[[ζ · ne]]‖2
0,e + C3

∑

e∈ξN
h

h
k2

‖(ζ · ne)‖2
0,e

≤ C
h2μ−2

k2s−3

⎛

⎝
∑

E∈τh

‖u‖2
s,E +

∑

E∈τh

‖p‖2
s,E.

⎞

⎠ . (62)

This completes the proof. ��

Appendix 2: Proof of Proposition 3

Proof of Proposition 3 Let

G(u, v) =
∑

E∈τh

∫

E
K−1u · v dx +

∑

e∈ξN
h

1

α

∫

e
(u · ne)(v · ne) dγ ,

F(p; v) = −
∑

E∈τh

∫

E
v · ∇ p dx +

∑

e∈ξ
′
h

[[p]]{v · ne} dγ

+
∑

e∈ξD
h

p(v · ne) dγ

−
∑

e∈ξ
′
h

1

2α

∫

e
[[−(K∇ p) · ne]][[v · ne]] dγ .

Existence and uniqueness of the discrete velocity As
the space 
k

h has finite dimension, it is sufficient to
show the uniqueness of the solution. Let v ∈ 
k

h be such

that G(v, v) = 0. Then
∑

E∈τh

∫

E
(K−1v) · v dx = 0. Con-

sequently, from the ellipticity of K, we get ||v||20,E =
0 ∀ E ∈ τh. Hence, v ≡ 0.
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Error estimates Denote η = u − û, ζ = û − uh, with û
an interpolation of u satisfying for each component the
relation (10) given by Lemma 2. We have

G(ζ, ζ ) = −G(η, ζ ) + G(u, ζ ) − G(uh, ζ )

= −G(η, ζ ) − F(p − ph; ζ ). (63)

It follows that

|G(ζ, ζ )| ≤ |G(η, ζ )| + |F(p − ph; ζ )|. (64)

Then

|G(η, ζ )| ≤ A1 + A2,

|F(p − ph; ζ )| ≤ L1 + L2 + L3 + L4, (65)

where Ai, i = 1, . . . 3, Li, i = 1, . . . 4 are given below
and bounded using the algebraic inequality ab ≤ εa2 +
1
4ε

b 2, which is true for any real numbers a and b and
ε > 0.

A1 =
∑

E∈τh

∫

E
|(K−1η) · ζ | dx

≤ c1

∑

E∈τh

‖η‖0,E‖ζ‖0,E

≤ c1ε1

∑

E∈τh

‖ζ‖2
0,E + c1

4ε1

∑

E∈τh

‖ζ‖2
0,E,

A2 =
∑

e∈ξN
h

1

α

∫

e
|(η · ne)(ζ · ne)| dγ

≤ ε2

∑

e∈ξN
h

1

α
‖(ζ · ne)‖2

0,e + 1

4ε2

∑

e∈ξN
h

1

α
‖(η · ne)‖2

0,e,

L1 =
∑

E∈τh

∫

E
|ζ · ∇(p − ph)| dx

≤ ε3

∑

E∈τh

‖ζ‖2
0,E + 1

4ε4

∑

E∈τh

‖p − ph‖2
1,E,

L2 =
∑

e∈ξ
′
h

∫

e

√
α

2
|[[p − ph]]|

√
2

α
|{ζ · ne}| dγ

≤ ε4

∑

e∈ξ
′
h

2

α
‖{ζ · ne}‖2

0,e + 1

4ε4

∑

e∈ξ
′
h

α

2
‖[[p − ph]]‖2

0,e,

L3 =
∑

e∈ξD
h

∫

e

√
α|p − ph|

√
1

α
|ζ · ne| dγ

≤ ε4

∑

e∈ξD
h

1

α
‖ζ · ne‖2

0,e + 1

4ε4

∑

e∈ξD
h

α‖[[p − ph]]‖2
0,e,

L4 =
∑

e∈ξ
′
h

1

2α

∫

e
|[[(K∇ p − ph) · ne]][[ζ · ne]]| dγ

≤ 1

4ε5

∑

e∈ξ
′
h

1

2α
‖[[(K∇ p − ph) · ne]]‖2

0,e

+ ε5

∑

e∈ξ
′
h

1

2α
‖[[ζ · ne]]‖2

0,e.

Using inequality (a + b)2 ≤ 2a2 + 2b 2 and the trace
inequality (9), we obtain

∑

e∈ξ
′
h

2

α
‖{ζ · ne}‖2

0,e +
∑

e∈ξD
h

1

α
‖ζ · ne‖2

0,e

≤ c2
k2

h
1

α

∑

E∈τh

‖ζ‖2
0,E.

Consequently

|G(ζ, ζ )| ≤ A1 + A2 + L1 + L2 + L3 + L4

≤
(

c1ε1 + ε3 + ε4 c2
k2

h
1

α

) ∑

E∈τh

‖ζ‖2
0,E

+ ε2

∑

e∈ξN
h

1

α
‖(ζ · ne)‖2

0,e

+ ε5

∑

e∈ξ
′
h

1

2α
‖[[ζ · ne]]‖2

0,e

+ c1

4ε1

∑

E∈τh

‖η‖2
0,E + 1

4ε2

∑

e∈ξN
h

1

α
‖(η · ne)‖2

0,e

+
(

1

4ε3
+ 1

4ε4
+ 1

4ε5

)

||| p − ph |||. (66)

Using the ellipticity of K, we get

1

λM

∑

E∈τh

‖ζ‖2
0,E +

∑

e∈ξN
h

1

α
‖(ζ · ne)‖2

0,e ≤ |G(ζ, ζ )|. (67)
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By Eq. 66, this gives

(
1

λM
− c1ε1 − ε3 − ε4 c2

k2

h
1

α

) ∑

E∈τh

‖ζ‖2
0,E

+ (1 − ε2)
∑

e∈ξN
h

1

α
‖(ζ · ne)‖2

0,e + ε5

∑

e∈ξ
′
h

1

2α
‖[[ζ · ne]]‖2

0,e

≤ c1

4ε1

∑

E∈τh

‖η‖2
0,E + 1

4ε2

∑

e∈ξN
h

1

α
‖(η · ne)‖2

0,e

+
(

1

4ε4
+ 1

4ε5
+ 1

4ε5

)

||| p − ph |||2

+ ε5

∑

e∈ξ
′
h

1

α
‖[[ζ · ne]]‖2

0,e. (68)

Using the inequality
∑

e∈ξ
′
h
‖[[ζ · ne]]‖2

0,e ≤
c2

k2

h

∑
E∈τh

‖η‖2
0,E, we get

(
1

λM
− c1ε1 − ε3 − (ε4 + ε5) c2

k2

h
1

α

) ∑

E∈τh

‖ζ‖2
0,E

+ (1 − ε2)
∑

e∈ξN
h

1

α
‖(ζ · ne)‖2

0,e + ε5

∑

e∈ξ
′
h

1

2α
‖[[ζ · ne]]‖2

0,e

≤ c1

4ε1

∑

E∈τh

‖η‖2
0,E + 1

4ε2

∑

e∈ξN
h

1

α
‖(η · ne)‖2

0,e

+
(

1

4ε4
+ 1

4ε5
+ 1

4ε5

)

||| p − ph |||2. (69)

Choosing α = σk2

h and εi > 0, i = 1, . . . , 5 such that

⎧
⎪⎨

⎪⎩

(
1

λM
− c1ε1 − ε3 − (ε4 + ε5)

c2

σ

)

> 0,

1 − ε2

σ
> 0,

which is possible provided that

⎧
⎪⎨

⎪⎩

c1ε1 = ε3 = ε4
c2

σ
= ε5

c2

σ
= 1

8λM

ε2 = 1

2
.

,

it turns out that one can find some constants Ci > 0,
i = 1, . . . , 6 independent of k and h such that

C1

∑

E∈τh

‖ζ‖2
0,E + C2

∑

e∈ξ
′
h

h
k2

‖[[ζ · ne]]‖2
0,e

+ C3

∑

e∈ξN
h

h
k2

‖(ζ · ne)‖2
0,e

≤ C4

∑

E∈τh

‖η‖2
0,E

︸ ︷︷ ︸
T2

+ C5

∑

e∈ξN
h

h
k2

‖(η · ne)‖2
0,e

︸ ︷︷ ︸
T1

+ C6||| p − ph |||2
︸ ︷︷ ︸

T3

. (70)

By the approximation result of Lemma 2, it follows that

T1 + T2 ≤ C
h2μ−2

k2s−3

∑

E∈τh

‖u‖2
s,E.

The last term (i.e., T3) is treated using the error
estimate (11). ��

Appendix 3: Proof of Proposition 5

Proof of Proposition 5 Summing Eq. 37 over all ele-
ments E ∈ τh, we get

∑

E∈τh

∫

E
K−1uh · vh dx +

∑

E∈τh

1

2α

∫

∂ E∩∂ E′
uh · n vh · n dγ

+
∑

e∈ξN
h

1

α

∫

e
uh · ne vh · ne dγ

=
∑

E∈τh

∫

E
(−∇ ph) · vh dx +

∑

e∈ξ
′
h

∫

e
[[ph]]{vh · ne} dγ

−
∑

E∈τh

1

2α

∫

∂ E∩∂ E′
(K′∇ p′

h) · n vh · n dγ

+
∑

e∈ξD
h

∫

e
(ph − pD) vh · ne dγ

−
∑

e∈ξN
h

1

α

∫

e
gN vh · ne dγ . (71)



Comput Geosci (2012) 16:93–122 117

Using the identity ab + cd = 1
2 (a + c)(c + d) + 1

2 (a −
c)(b − d) we have

∑

E∈τh

1

2α

∫

∂ E∩∂ E′
uh · n vh · n dγ

=
∑

e∈ξ
′
h

1

4α

∫

e
[[uh · ne]][[vh · ne]] dγ

+
∑

e∈ξ
′
h

1

α

∫

e
{uh · ne}{vh · ne} dγ (72)

and
∑

E∈τh

1

2α

∫

∂ E∩∂ E′
(K′∇ p′

h) · n vh · n dγ

=
∑

e∈ξ
′
h

1

4α

∫

e
[[K∇ ph · ne]][[vh · ne]] dγ

−
∑

e∈ξ
′
h

1

α

∫

e
{K∇ ph · ne}{vh · ne} dγ .

Hence, problem (37) can be rewritten as

G(uh, vh) = l(vh) ∀vh ∈ 
k
h, (73)

where

G(u, v) =
∑

E∈τh

∫

E
K−1u · v dx

+
∑

e∈ξ
′
h

1

4α

∫

e
[[u · ne]][[v · ne]] dγ

+
∑

e∈ξ
′
h

1

α

∫

e
{u · ne}{v · ne} dγ

+
∑

e∈ξN
h

1

α

∫

e
u · ne v · ne dγ , (74)

l(v) =
∑

E∈τh

∫

E
(−∇ p) · v dx

−
∑

e∈ξ
′
h

1

4α

∫

e
[[K∇ p · ne]][[v · ne]] dγ

+
∑

e∈ξ
′
h

1

α

∫

e
{K∇ p · ne}{v · ne} dγ

+
∑

e∈ξ
′
h

∫

e
[[p]]{v · ne} dγ

+
∑

e∈ξD
h

∫

e
(ph − pD) v · ne dγ

−
∑

e∈ξN
h

1

α

∫

e
gN v · ne dγ . (75)

Proceeding as in the two previous propositions, we
can show that this problem has a unique solution. Let
us now estimate the errors. For a given function p,
introduce the following linear form:

F(p; v) =
∑

E∈τh

∫

E
(−∇ p) · v dx

−
∑

e∈ξ
′
h

1

4α

∫

e
[[K∇ p · ne]][[v · ne]] dγ

+
∑

e∈ξ
′
h

∫

e
[[p]]{v · ne} dγ

+
∑

e∈ξ
′
h

1

α

∫

e
{K∇ p · ne}{v · ne} dγ

+
∑

e∈ξD
h

∫

e
p v · ne dγ . (76)

Denote η = u − û, ζ = û − uh, with û an interpolate
of u satisfying for each component the relation (10)
given by Lemma 2. Since,

G(ζ, ζ ) = −G(η, ζ ) + G(u, ζ ) − G(uh, ζ )

= −G(η, ζ ) − F(p − ph; ζ ), (77)

it follows that

|G(ζ, ζ )| ≤ |G(η, ζ )| + |F(p − ph; ζ )|. (78)

Consequently,

|G(η, ζ )| ≤ A1 + A2 + A3 + A4,

|F(p − ph; ζ )| ≤ L1 + L2 + L3 + L4 + L5, (79)

where Ai, i = 1, . . . 4 and Li, i = 1, . . . 5 are given below
and are bounded using the algebraic inequality ab ≤
εa2 + 1

4ε
b 2, which is valid for any real numbers a and

b and ε > 0.

A1 =
∑

E∈τh

∫

E
|(K−1η) · ζ | dx

≤ c1

∑

E∈τh

‖η‖0,E‖ζ‖0,E

≤ c1ε1

∑

E∈τh

‖ζ‖2
0,E + c1

4ε1

∑

E∈τh

‖η‖2
0,E,
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A2 =
∑

e∈ξ
′
h

1

4α

∫

e
|[[η · ne]][[ζ · ne]]| dγ

≤ ε2

∑

e∈ξ
′
h

1

2α
‖[[ζ · ne]]‖2

0,e + 1

4ε2

∑

e∈ξ
′
h

1

2α
‖[[η · ne]]‖2

0,e,

A3 =
∑

e∈ξ
′
h

1

α

∫

e
|{η · ne}{ζ · ne}| dγ

≤ ε3

∑

e∈ξ
′
h

1

α
‖{ζ · ne}‖2

0,e + 1

4ε3

∑

e∈ξ
′
h

1

α
‖{η · ne}‖2

0,e,

A4 =
∑

e∈ξN
h

1

α

∫

e
|(η · ne)(ζ · ne)| dγ

≤ ε4

∑

e∈ξN
h

1

α
‖(ζ · ne)‖2

0,e + 1

4ε4

∑

e∈ξN
h

1

α
‖(η · ne)‖2

0,e,

L1 =
∑

E∈τh

∫

E
|ζ · ∇(p − ph)| dx

≤ ε5

∑

E∈τh

‖ζ‖2
0,E + 1

4ε5

∑

E∈τh

‖p − ph‖2
1,E,

L2 =
∑

e∈ξ
′
h

∫

e

√
α

2
|[[p − ph]]|

√
2

α
|{ζ · ne}| dγ

≤ ε6

∑

e∈ξ
′
h

2

α
‖{ζ · ne}‖2

0,e + 1

4ε6

∑

e∈ξ
′
h

α

2
‖[[p − ph]]‖2

0,e,

L3 =
∑

e∈ξD
h

∫

e

√
α|p − ph|

√
1

α
|ζ · ne| dγ

≤ ε7

∑

e∈ξD
h

1

α
‖ζ · ne‖2

0,e + 1

4ε7

∑

e∈ξD
h

α‖[[p − ph]]‖2
0,e,

L4 =
∑

e∈ξ
′
h

1

4α

∫

e
|[[(K∇ p − ph) · ne]][[ζ · ne]]| dγ

≤ 1

4ε8

∑

e∈ξ
′
h

1

4α
‖[[(K∇ p − ph) · ne]]‖2

0,e

+ε8

∑

e∈ξ
′
h

1

4α
‖[[ζ · ne]]‖2

0,e.

L5 =
∑

e∈ξ
′
h

1

2α

∫

e
|{(K∇ p − ph) · ne}{ζ · ne}| dγ

≤ 1

4ε9

∑

e∈ξ
′
h

1

2α
‖{(K∇ p − ph) · ne}‖2

0,e

+ε9

∑

e∈ξ
′
h

1

2α
‖{ζ · ne}‖2

0,e.

Observing that there exists a constant c2 > 0 indepen-
dent of h and k such that

∑

e∈ξD
h

1

α
‖ζ · ne‖2

0,e ≤ c2
k2

h
1

α

∑

E∈τh

‖ζ‖2
0,E,

we get

|G(ζ, ζ )| ≤ A1+ A2+ A3+ A4+L1+L2+L3+L4+L5

≤
(

c1ε1 + ε5 + ε7 c2
k2

h
1

α

) ∑

E∈τh

‖ζ‖2
0,E

+
(ε2

2
+ ε8

4

) ∑

e∈ξ
′
h

1

α
‖[[ζ · ne]]‖2

0,e

+
(
ε3 + 2ε6 + ε9

2

) ∑

e∈ξ
′
h

1

α
‖{ζ · ne}‖2

0,e

+ ε4

∑

e∈ξN
h

1

α
‖(ζ · ne)‖2

0,e + c1

4ε1

∑

E∈τh

‖η‖2
0,E

+ 1

4ε2

∑

e∈ξ
′
h

1

2α
‖[[η · ne]]‖2

0,e

+ 1

4ε3

∑

e∈ξ
′
h

1

α
‖{η · ne}‖2

0,e

+ 1

4ε4

∑

e∈ξN
h

1

α
‖(η · ne)‖2

0,e

+
(

1

4ε5
+ 1

4ε6
+ 1

4ε7
+ 1

8ε9
+ 1

16ε8

)

× ||| p − ph |||. (80)

The ellipticity property of K yields

1

λM

∑

E∈τh

‖ζ‖2
0,E +

∑

e∈ξ
′
h

1

4α
‖[[ζ · ne]]‖2

0,e + 1

α
‖{ζ · ne}‖2

0,e

+
∑

e∈ξN
h

1

α
‖(η · ne)‖2

0,e ≤ G(ζ, ζ ). (81)

Combining Eqs. 80 and 81, we get

(
1

λM
− c1ε1 − ε5 − ε7 c2

k2

h
1

α

) ∑

E∈τh

‖ζ‖2
0,E

+
(

1

4
− ε2

2
− ε8

4

) ∑

e∈ξ
′
h

1

α
‖[[ζ · ne]]‖2

0,e
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+
(

1 − ε3 − 2ε6 − ε9

2

) ∑

e∈ξ
′
h

1

α
‖{ζ · ne}‖2

0,e

+ (1 − ε4)
∑

e∈ξN
h

1

α
‖(ζ · ne)‖2

0,e

≤ c1

4ε1

∑

E∈τh

‖η‖2
0,E + 1

4ε2

∑

e∈ξ
′
h

1

2α
‖[[η · ne]]‖2

0,e

+ 1

4ε3

∑

e∈ξ
′
h

1

α
‖{η · ne}‖2

0,e + 1

4ε4

∑

e∈ξN
h

1

α
‖(η · ne)‖2

0,e

+
(

1

4ε5
+ 1

4ε6
+ 1

4ε7
+ 1

8ε8
+ 1

16ε9

)

× ||| p − ph |||. (82)

Choosing α = σk2

h and εi > 0, i = 1, . . . , 9 such that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1

λM
− c1ε1 − ε5 − ε7 c2

k2

h
1
α

)
> 0,

(
1
4 − ε2

2 − ε8
4

)
> 0,(

1 − ε3 − 2ε6 − ε9
2

)
> 0,

(1 − ε4) > 0,

which is possible,

provided that

⎧
⎪⎪⎨

⎪⎪⎩

c1ε1 = ε5 = ε7
c2
σ

= 1
6λM

,
ε2
2 = ε8

4 = 1
8 ,

ε3 = 2ε6 = ε9
2 = 1

6 ,

ε4 = 1
2 ,

it turns out

that one can find constants Ci > 0, i = 1, . . . , 9 inde-
pendents of k and h such that

C1

∑

E∈τh

‖ζ‖2
0,E + C2

∑

e∈ξ
′
h

h
k2

‖[[ζ · ne]]‖2
0,e

+C3

∑

e∈ξ
′
h

h
k2

‖{ζ · ne}‖2
0,e

+C4

∑

e∈ξN
h

h
k2

‖(ζ · ne)‖2
0,e

≤ C9||| p − ph |||2
︸ ︷︷ ︸

T2

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C5

∑

E∈τh

‖η‖2
0,E + C6

∑

e∈ξ
′
h

h
k2

‖[[η · ne]]‖2
0,e

+C7

∑

e∈ξ
′
h

h
k2

‖{η · ne}‖2
0,e

+C8
∑

e∈ξN
h

h
k2 ‖(η · ne)‖2

0,e

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
T1

.

(83)

We only need to give upper bound to T1 and T2 to
conclude.

Using the approximation result given by Lemma 2,
we get

T1 ≤ C
h2μ−2

k2s−3

∑

E∈τh

‖u‖2
s,E.

The bound of the last term, T2, is directly given by the
convergence result (Eq. 11). ��

Appendix 4: Preliminaries tools for estimation of α

In order to estimate the α in the proposed velocity
reconstructions, we need the following estimates:

Lemma 3 Def ine for any E ∈ τh, the quantity

κE = (k + 1)(k + d)

4λE
md

|∂ E|
|E| , (84)

where d and λE
m are def ined in Section 2.1.

Then for any positive real numbers ε1, ε2, ε3, ε4, ε5,
the following inequality hold:

∣
∣
∣
∣
∣
∣

∑

E∈τh

∫

E
− ∇ ph · uh dx

∣
∣
∣
∣
∣
∣
≤

∑

E∈τh

ε1

∫

E
K−1uh · uh dx

+
∑

E∈τh

1

4ε1

∫

E
K∇ ph · ∇ ph dx, (85)

∣
∣
∣
∣
∣
∣

∑

e∈ξ
′
h

∫

e
[[ph]]{u · ne} dγ +

∑

e∈ξD
h

∫

e
(ph − pD)u · ne dγ

∣
∣
∣
∣
∣
∣

≤
∑

e∈ξ
′
h

ε2

∫

e
[[ph]]2 dγ +

∑

e∈ξD
h

ε2

∫

e
(ph − pD)2 dγ

+
∑

E∈τh

κE

ε2

∫

E
K−1uh · uh dx, (86)

∣
∣
∣
∣
∣
∣
−

∑

e∈ξN
h

1

α

∫

e
gNuh · ne dγ

∣
∣
∣
∣
∣
∣
≤

∑

e∈ξN
h

1

4ε3α

∫

e
(gN)2 dγ

+
∑

e∈ξN
h

ε3

α

∫

e
(uh · ne)

2 dγ , (87)
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∣
∣
∣
∣
∣
∣
−

∑

e∈ξ
′
h

1

2α

∫

e
[[−K∇ ph · ne]][[uh · ne]] dγ

∣
∣
∣
∣
∣
∣

≤
∑

e∈ξ
′
h

ε4

2α

∫

e
[[−K∇ ph · ne]]2 dγ

+
∑

e∈ξ
′
h

1

2α4ε4

∫

e
[[uh · ne]]2 dγ , (88)

∣
∣
∣
∣
∣
∣

∑

e∈ξ
′
h

1

α

∫

e
{K∇ ph · ne}{uh · ne} dγ

∣
∣
∣
∣
∣
∣

≤
∑

e∈ξ
′
h

ε5

α

∫

e
{K∇ ph · ne}2 dγ

+
∑

e∈ξ
′
h

1

α4ε5

∫

e
{uh · ne}2 dγ , (89)

∣
∣
∣
∣
∣
∣
−

∑

e∈ξ
′
h

1

2α

∫

e
[[−K∇ ph · ne]][[uh · ne]] dγ

∣
∣
∣
∣
∣
∣

≤
∑

e∈ξ
′
h

ε4

2α

∫

e
[[−K∇ ph · ne]]2 dγ

+
∑

E∈τh

κE

αε4

∫

E
K−1uh · uh dx. (90)

Proof Simple application of the algebraic inequality
ab ≤ εa2 + 1

4ε
b 2 (valid for any ε > 0) and the inverse

inequality (see Lemma 1). ��

Appendix 5: Proof of Proposition 2

Proof Taking vh = uh in Eq. 27 and treating the right-
hand side using Eqs. 85–87 of Lemma 3, we get:

∑

E∈τh

(1 − ε1 − κE

ε2
)

∫

E
K−1uh · uh dx

+
∑

e∈ξ
′
h

1

2α

∫

e
[[uh · ne]]2 dγ +

∑

e∈ξN
h

1 − ε3

α

∫

e
(uh · ne)

2 dγ

≤
∑

E∈τh

1

4ε1

∫

E
K∇ ph · ∇ ph dx +

∑

e∈ξ
′
h

ε2

∫

e
[[ph]]2 dγ

+
∑

e∈ξD
h

ε2

∫

e
(ph − pD)2 dγ +

∑

e∈ξN
h

1

4ε3α

∫

e
(gN)2 dγ

(91)

Hence, the required stability holds provided there ex-
ists a constant c such that
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − ε1 − κE

ε2
> 0,

1 − ε3 > 0,
1

4ε1
≤ 1,

2ε2 = c × β,

where β is the one used when solving pressure
equation.

Since for c ≥ 4κE
3β

we can always find εi, i = 1, 2, 3
satisfying the above assumptions, it follows that α is
independent of β. ��

Appendix 6: Proof of Proposition 4

Proof Taking vh = uh in Eq. 31 and treating the right-
hand side using Eqs. 85–87, and 90 of Lemma 3, we get:

∑

E∈τh

(1 − ε1 − κE

ε2
− κE

αε4
)

∫

E
K−1uh · uh dx

+
∑

e∈ξN
h

1 − ε3

α

∫

e
(uh · ne)

2 dγ

≤
∑

E∈τh

1

4ε1

∫

E
K∇ ph · ∇ ph dx +

∑

e∈ξ
′
h

ε2

∫

e
[[ph]]2 dγ

+
∑

e∈ξD
h

ε2

∫

e
(ph − pD)2 dγ +

∑

e∈ξ
′
h

∫

e

ε4

2α
dγ [[K∇ ph · ne]]2

+
∑

e∈ξN
h

1

4ε3α

∫

e
(gN)2 dγ (92)

Hence the required stability holds provided there exist
two constants c1 and c2 such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 − ε1 − κE

ε2
− κE

αε4
> 0,

1 − ε3 > 0,
1

4ε1
≤ 1,

2ε2 = c1 × β,

ε4β = c2 × α,

where β is the one used when solving pressure equa-
tion. Treating all these constraints shows that α should
depend on β. More precisely, take c2 = 1 and rename
c1 = a, we get ε2 = aβ, and α = ε4β. We need then to
select ε1, a, ε4, such that

1

4
≤ ε1 < 1 − κE

(
1

ε2
+ 1

αε4

)

.
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This will be the case if we can find them such that

κE

β

(
1

a
+ 1

ε2
4

)

<
3

4
.

Since 3β

4κE
is constant, we can always find a > 0 such that

3β

4κE
− 1

a > 0 and consequently determine ε4 by

ε4 ≥ 1
√

3β

4κE
− 1

a

and the result holds. ��

This proof shows that when we have determined
a > 0 such that 3β

4κE
− 1

a > 0, then we can define α in
problem (31) by

α ≥ β
√

3β

4κE
− 1

a

.

Appendix 7: Proof of Proposition 6

Proof Taking vh = uh in Eq. 37 and treating the right-
hand side using Eqs. 85–90 of Lemma 3, we get:

∑

E∈τh

(

1 − ε1 − κE

ε2

) ∫

E
K−1uh · uh dx

+
∑

e∈ξ
′
h

1

4α

(

1 − 1

4ε4

) ∫

e
[[uh · ne]]2 dγ

+
∑

e∈ξ
′
h

1

α

(

1 − 1

4ε5

) ∫

e
{uh · ne}2 dγ

+
∑

e∈ξN
h

1 − ε3

α

∫

e
(uh · ne)

2 dγ

≤
∑

E∈τh

1

4ε1

∫

E
K∇ ph · ∇ ph dx +

∑

e∈ξ
′
h

ε2

∫

e
[[ph]]2 dγ

+
∑

e∈ξD
h

ε2

∫

e
(ph − pD)2 dγ

+
∑

e∈ξ
′
h

ε4

4α

∫

e
[[K∇ ph · ne]]2 dγ

+
∑

e∈ξ
′
h

ε5

α

∫

e
{K∇ ph · ne}2 dγ

+
∑

e∈ξN
h

1

4ε3α

∫

e
(gN)2 dγ . (93)

Hence, the required stability holds provided there exist
two constants c1, c2, and c3 such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − ε1 − κE

ε2
> 0, 1 − 1

4ε4
> 0,

1 − 1

4ε5
> 0, 1 − ε3 > 0,

1

4ε1
≤ 1, 2ε2 = c1 × β,

ε4β = c2 × α, ε5β = c3 × α.

Treating this as above shows that α is independent of β.
More precisely, since κE

β
and β

α
are constants, by taking

c1 > 8κE
3β

, c2 >
β

α
and c3 >

β

α
, it is possible to determine

εi, i = 1, 2, 3, 4, 5 such that the above constraints are
satisfied. Consequently, α in problem (37) is indepen-
dent of β. ��
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