Fano varieties; Iskovskih’s classification

Ekaterina Amerik

For details and extensive bibliography, we refer to [2], chapter V, and [1].

A Fano variety is a projective manifold X such that the anticanonical line bundle K_X^{-1} is ample. By Kodaira vanishing, the Hodge numbers $h^{p,0}(X) = h^{0,p}(X)$ are zero for $p \neq 0$. Furthermore, Fano manifolds are simply connected (this is implied for example by their property to be rationally connected; see the main article on rational curves and uniruled varieties).

Simplest examples are obtained by taking smooth complete intersections of type (m_1, m_2, \ldots, m_k) in \mathbb{P}^n. By adjunction formula, such a complete intersection is Fano if and only if $\sum m_i \leq n$. A larger class of examples is that of complete intersections in a weighted projective space $\mathbb{P}(a_0, a_1, \ldots, a_n)$ (this is $(\mathbb{C}^{n+1} - 0)/\mathbb{C}^*$, where \mathbb{C}^* acts with weights a_0, a_1, \ldots, a_n; it is singular when not isomorphic to a usual projective space, but we consider complete intersections avoiding the singularities): the Fano condition amounts then to $\sum m_i < \sum a_i$. Rational homogeneous varieties G/H (G semisimple, H parabolic) are Fano, too.

A Fano curve is, obviously, \mathbb{P}^1. If $n = \dim(X) = 2$ and X is Fano, then X is called a Del Pezzo surface. Such surfaces have been classically studied, and it is well-known that any such X is isomorphic either to \mathbb{P}^2, or to $\mathbb{P}^1 \times \mathbb{P}^1$, or to \mathbb{P}^2 blown up in d points $(1 \leq d \leq 8)$ in general position, ”general position” meaning here that no three points are on a line and no six on a conic. For $1 \leq d \leq 6$, the anticanonical map is an embedding. It realizes a blow-up of \mathbb{P}^2 in d points $(1 \leq d \leq 6)$ as a surface X_l of degree $l = K_X^2 = 9 - d$ in \mathbb{P}^l. For $d = 7$, one obtains X_2 which is a double cover of \mathbb{P}^2 ramified along a quartic, and for $d = 8$, a hypersurface of degree 6 in the weighted projective space $\mathbb{P}(1, 1, 2, 3)$ (which is the same as a double covering of a quadratic cone ramified in its section by a cubic; the double covering is given by the space of sections of K_X^{-2}.)

There are many more types of Fano threefolds. Even under the restriction $Pic(X) \cong \mathbb{Z}$, one obtains 18 families. Fano threefolds of Picard number one have been classified by Iskovskih, and Fano threefolds of higher Picard number, by Mori and Mukai (see [1]). Below we mention a few generalities on Fano manifolds and give an outline of Iskovskih’s classification.

A basic invariant of a Fano manifold is its index: this is the maximal integer r such that K_X is divisible by r in $Pic(X)$.

Theorem 1 ([3]) Let X be Fano, $\dim(X) = n$. Then the index $ind(X)$ is at most $n + 1$; moreover, if $ind(X) = n + 1$, then $X \cong \mathbb{P}^n$, and if $ind(X) = n$, then X
is a quadric.

(Note that \(\text{ind}(X) \leq n + 1 \) follows immediately from bend-and-break; but in fact the result of Kobayashi and Ochiai is much older, and the proof of their first statement is quite elementary.)

Theorem 2 (Kollar-Miyaoka-Mori, [2]): For any positive integer \(n \), there is only finitely many deformation types of Fano manifolds of dimension \(n \).

The number of families probably grows very fast together with \(n \).

A Fano threefold \(X \) can have index 4 (if \(X = \mathbb{P}^3 \)), 3 (if \(X = Q^3 \)), 2 or 1. Suppose that the Picard number of \(X \) is 1. Then \(K_X = H_X^{\text{ind}(X)} \), where \(H_X \) is the ample generator of \(\text{Pic}(X) \). Iskovskih’s classification asserts the following:

If \(\text{ind}(X) = 2 \), then \(1 \leq H_X^3 \leq 5 \), and:
- if \(H_X^3 = 1 \), \(X \) is a hypersurface of degree 6 in a weighted projective space \(\mathbb{P}(1,1,1,2,3) \);
- if \(H_X^3 = 2 \), \(X \) is a double covering of \(\mathbb{P}^3 \) ramified in a quartic surface (in other words, a hypersurface of degree 4 in a weighted projective space \(\mathbb{P}(1,1,1,1,2) \));
- if \(H_X^3 = 3 \), \(X \) is a cubic in \(\mathbb{P}^4 \);
- if \(H_X^3 = 4 \), \(X \) is a complete intersection of type (2,2) in \(\mathbb{P}^5 \);
- if \(H_X^3 = 5 \), \(X \) is a linear section of the Grassmannian \(G(2,5) \) in the Plücker embedding.

If \(\text{ind}(X) = 1 \), then:
- \(H_X^3 \) takes all even values between 2 and 22, except 18;
- low values of \(H_X^3 \) correspond to double covers: of \(\mathbb{P}^3 \) ramified in a sextic if \(H_X^3 = 2 \), of a quadric ramified in a quartic section if \(H_X^3 = 4 \);
- for \(H_X^3 = 4 \) there is of course one more family - that of quartics in \(\mathbb{P}^4 \);
- and also for all other families, \(H_X \) is very ample and embeds \(V_d \) (that is, a Fano threefold with \(H_X^3 = d \)) in \(\mathbb{P}^{d/2+2} \);
- \(V_6 \) and \(V_8 \) are obvious complete intersections, \(V_{10} \) is a section of a cone over \(G(2,5) \) by three hyperplanes and a quadric, \(V_{14} \) is a linear section of \(G(2,6) \);
- other \(V_d \) (\(d = 12, 16, 18, 22 \)) are more complicated, but there is a relatively simple description in terms of vector bundles on homogeneous varieties, due to Mukai. For instance, a \(V_{22} \) is the zero set of a section of the sum of three copies of \(\Lambda^2 U^* \) on \(G(3,7) \) (where \(U \) is the universal bundle).

There are more families of threefolds of higher Picard number; according to Mori and Mukai, its maximal value is 10.

References
