Ya Deng (IHES)Plus d'infos...Lieu : Salle 3L8 Résumé : For maximally varying, smooth fibrations of polarized manifolds with semi-ample canonical bundle, the Shafarevich-Viehweg conjecture says that the base spaces of these fibrations should be of log general type. This deep conjecture was proved by Campana-Paun in 2015. In this talk I will show that these base spaces are furthermore pseudo Kobayashi hyperbolic, i.e. Kobayashi hyperbolic modulo a proper Zariski closed subset, as predicted by the famous Lang conjecture. As a consequence, this in particular proves a conjecture by Viehweg-Zuo in 2003 : moduli spaces of polarized manifolds with semi-ample canonical bundle are Brody hyperbolic (containing no entire curves). I will also present another related work (jointly with Dan Abramovich) on the Kobayashi hyperbolicity for moduli spaces of general type manifolds. |
![]()
Département de Mathématiques
Bâtiment 307
Faculté des Sciences d'Orsay Université Paris-Sud F-91405 Orsay Cedex Tél. : +33 (0) 1-69-15-79-56
Département
Actualités
Les membres
Contacts
Présentation en images des maths à Orsay
Les Maths à Orsay de 1958 à nos jours
Diffusion des mathématiques
Offres d’emploi
Comité Parité du LMO
Fermeture du département
Fermeture du département
Laboratoire
|