18 octobre 2019

Yang Huang (Munich)
Convex hypersurface theory and applications in contact topology

Plus d'infos...

Lieu : Université de Nantes, Laboratoire de Mathématiques Jean Leray, salle Eole.

Résumé : Following ideas of Eliashberg-Gromov and Giroux, I will explain a Morse-theoretic approach to contact topology, especially in higher dimensions. Time permitting, I will also discuss current and future applications of convex hypersurface theory to contact topology. Based on joint work with K. Honda.

Convex hypersurface theory and applications in contact topology  Version PDF

Gaël Meigniez (UBS)
Deforming foliations into contact structures in all dimensions

Plus d'infos...

Lieu : Université de Nantes, Laboratoire de Mathématiques Jean Leray, salle Eole.

Résumé : Joint work with M. Bertelson. I will explain how every taut, almost symplectic, codimension-one foliation with enough holonomy on a (2n+1)-manifold can be deformed into a contact structure. The tools are a Morse theory for taut foliations, the Borman-Eliashberg-Murphy h-principle for overtwisted contact structures, and the Eliashberg-Murphy cobordism symplectization theorem.

Deforming foliations into contact structures in all dimensions  Version PDF