11 juin 2019

Paolo Stellari (Milan et IHES)
Cubic fourfolds, noncommutative K3 surfaces and stability conditions

Plus d'infos...

Lieu : salle 3L15 bâtiment 307

Résumé : We study stability conditions on the Kuznetsov components of
the derived categories of cubic fourfolds and we discuss the geometry
of moduli spaces of stable objects in these subcategories. We use this
to generalize results of Addington-Thomas and Huybrechts about cubic
fourfolds and to study the rich hyperkaehler geometry associated to
these hypersurfaces with an application to the Torelli theorem. This
is the content of joint works with Arend Bayer, Howard Nuer, Martí
Lahoz, Emanuele Macrì and Alex Perry.

Cubic fourfolds, noncommutative K3 surfaces and stability conditions  Version PDF