11 avril 2019

François Le Maître (IMJ-PRG)
Géométrie des groupes pleins L¹

Plus d'infos...

Lieu : IMO, salle 2L8

Résumé : Les groupes pleins L¹ sont des groupes polonais que l’on peut associer à n’importe quelle transformation préservant la mesure d’un espace de probabilité standard. Ils se souviennent complètement de la transformation à inversion et conjugaison près, et il est donc naturel de se demander comment les propriétés de la transformation se reflètent en des propriétés de groupe topologique. Dans cet exposé, je présenterai la théorie géométrique des groupes polonais, récemment introduite par Christian Rosendal, et j’expliquerai comment cette dernière pourrait fournir des invariants capables de distinguer finement certains groupes pleins L¹. Ceci motivera la question suivante : les groupes des permutations dyadiques et triadiques sont-ils quasi-isométriques pour leur distances L¹ respectives ?

Notes de dernières minutes : L’exposé sera précédé d’un café culturel assuré à 13h par Cyril Houdayer.

Géométrie des groupes pleins L¹  Version PDF

Bruce M. Boghosian (Tufts University)
Introduction to Lattice Boltzmann methods for higher-order partial differential equations