18 février 2019

Nicolas de Saxcé (Villetaneuse)
Marches aléatoires et convolutions de mesures dans les groupes parfaits

Plus d'infos...

Lieu : salle 3L8

Résumé : Nous rappellerons la conjecture du trou spectral pour les marches aléatoires adaptées sur les groupes de Lie simples compacts, puis expliquerons la part d’analyse harmonique dans les démonstrations des résultats partiels connus aujourd’hui sur cette conjecture. Ensuite, nous montrerons comment ces techniques peuvent se généraliser dans les groupes parfaits, non nécessairement compacts.

Marches aléatoires et convolutions de mesures dans les groupes parfaits  Version PDF

Laszlo Lempert (Purdue)
Extrapolation, une technique à estimer

Plus d'infos...

Lieu : IMO ; salle 3L8.

Résumé : En développant le thème d’une collaboration avec Berndtsson, j’introduis une technique générale a estimer des opérateurs entre espaces de Banach. L’idée est de plonger l’opérateur dans une famille d’opérateurs, paramétrée par une demi-droite, et regarder cette famille comme un homomorphisme de fibres en espaces de Banach. On peut alors se servir des hypothèses de nature d’holomorphie et de courbure convenable pour estimer l’opérateur initial par la limite de la famille a un bout ou a l’autre de la demi-droite.
Je vais illustrer la technique par une preuve d’un théorème de type Ohsawa-Takegoshi.

Extrapolation, une technique à estimer  Version PDF

Sara Brofferio (Université Paris-Sud)
Frontière de Poisson : des groupes discrets aux groupes continus

Plus d'infos...

Lieu : Salle 2P8

Résumé : Soit \mu une mesure de probabilité sur un groupe G. Un problème classique en théorie de probabilité est de caractériser les fonctions harmoniques sur G, c’est-à-dire les fonctions qui restent constantes par rapport à la convolution avec $\mu$.
Pour les groupes des matrices, la question commence à être assez bien comprise dans le cas où la mesure $\mu$ est lisse sur G, et en particulier pour les groupes dénombrables.On sait, dans beaucoup de cas, donner une représentation intégrale des fonctions harmoniques bornées, c’est-à-dire décrire la frontière de Poisson.
Il reste cependant beaucoup des questions ouvertes sur ce qui se passe lorsque la mesure $\mu$ est supporté par un nombre dénombrable d’éléments du groupe.
Dans ce cas la mesure $\mu$ et les fonctions harmoniques associées vivent à la fois groupe $G$ ET sur $\Gamma$, le sous groupe dénombrable de $G$ engendré par le support de \mu.
Une question naturelle est savoir comme les fonctions harmoniques sur le sous groupe discret $\Gamma$ sont liées aux fonctions harmoniques sur le groupe continu $G$. En particulier :
Peut-on construire la la frontière de Poisson de $G$ lorsque on connait (comme s’est souvent le cas) la frontière de Poisson de $\Gamma$ ?
Dans cette exposé je montrerai que la $G$-frontière coïncide avec l’espace de composants ergodiques pour l’action de $\Gamma$ sur le produit de $G$ et de la $\Gamma$-frontière. En particulier cette action est ergodique si et seulement si il n’existe pas de $G$-fonctions harmoniques bornées.
Cela permet construire la $G$-frontière de Poisson pour le groupe du Baumslag-Solitar.
Je présenterai aussi une série de questions ouvertes.

Frontière de Poisson : des groupes discrets aux groupes continus  Version PDF