31 janvier 2019

Jean-François Babadjian (LMO)
Une approche variationnelle de la mécanique de la rupture

Plus d'infos...

Lieu : IMO, Salle 3L8

Résumé : Dans cet exposé, nous présenterons un modèle variationnel en mécanique de la rupture fragile introduit par Francfort et Marigo. Celui-ci repose sur une idée originale due à Griffith qui postule l’existence d’une énergie de surface. La propagation des fissures est alors le résultat d’une compétition entre une énergie de volume, l’énergie élastique, et cette énergie de surface. L’approche classique pour étudier ce modèle est basée sur une discrétisation temporelle qui engendre, lorsque le pas de temps tend vers zéro, des solutions faibles en temps continu : le déplacement appartient à un sous espace des fonctions à variation bornée et la fissure est un ensemble rectifiable. Nous montrerons que dans le cas 2D anti-plan, ces solutions faibles sont en fait des solutions fortes au sens où la fissure est un ensemble fermé en dehors duquel le champ des déplacements est régulier.

Une approche variationnelle de la mécanique de la rupture  Version PDF

Federico Rodriguez Hertz (Pennsylvania State University)
Rigidity results for Anosov dynamics

Plus d'infos...

Lieu : Institut de Mathématique d'Orsay, salle 2L8

Résumé : In this talk we will discuss some recent rigidity results we found with Andrey Gogolev for expanding maps, Anosov diffeomorphisms and flows. These results include some straightening of results by de La Llave Marco and Moriyon, and also results by Otal.

Rigidity results for Anosov dynamics  Version PDF

Timothée Mathieu 
La robustesse : des statistiques paramétriques au Machine Learning

Antonin Chambolle (CNRS, CMAP)
Existence et régularité des minimiseurs de la fonctionnelles de Griffith

Plus d'infos...

Lieu : IMO, Salle 3L8

Résumé : Le modèle variationnel de rupture fragile de Francfort et Marigo est basé sur la minimisation d’une énergie mettant en compétition une énergie élastique interne et un terme de dissipation proportionnel à la surface de la fissure. Une théorie basée sur la minimisation d’une formulation faible et des résultats de régularité a permis, dans les années 1990, de montrer l’existence de solutions pour une variante scalaire de ce problème, l’énergie de Mumford et Shah, proposée pour le traitement d’image et dont la formulation de Francfort et Marigo s’inspire, mais l’extension au cadre de l’élasticité linéarisée a posé pendant longtemps des difficultés insolubles. Nous exposerons ces difficultés et montrerons l’existence de solutions « faibles » puis « fortes » à la fonctionnelle de Griffith.

Existence et régularité des minimiseurs de la fonctionnelles de Griffith  Version PDF