28 janvier 2019

Xin Zhang (IHES)
Local-global principle in circle packings

Plus d'infos...

Lieu : salle 3L8

Résumé : Starting with four mutually tangent circles, one containing the other three, an Apollonian circle packing (ACP) is formed by recursively inscribing one circle into three neighbouring circles. A most spectacular result on the arithmetic aspect of ACP due to Bourgain and Kontorovich is an « almost » local-global principle, which gives precise information on integers appearing as curvatures of circles from a fixed integral ACP. In recent years, integral circle packings of different conformal types have been constructed as limit sets of geometrically finite Kleinian groups. We identify the keys of Bourgain and Kontorovich’s work, and obtain an almost local-global principle for a broad class of integral circle packings. We explain how tools from analytic number theory, dynamics on hyperbolic 3-spaces and spectral graph theory come into the proof. This is joint work with Fuchs and Stange.

Local-global principle in circle packings  Version PDF

Gilles Courtois 
Théorème de finitude presque sans courbure

Plus d'infos...

Lieu : IMO ; salle 3L8.

Résumé : Les théorèmes de compacité de Gromov et de finitude de Cheeger portent sur des ensembles de variétés riemanniennes dont la courbure est uniformément minorée. Le but de l’exposé est d’expliquer comment on peut remplacer cette minoration de courbure par une majoration d’un invariant global, l’entropie.

Théorème de finitude presque sans courbure  Version PDF