14 janvier 2019

Plus d'infos...

Programme : Programme sur le site web dédié

 

Henry de Thélin (Villetaneuse)
Un principe variationnel pour les applications méromorphes

Plus d'infos...

Lieu : salle 3L8

Résumé : Soit f une application méromorphe sur une variété kählérienne compacte X. A partir d’une suite d’éclatements de X, nous construisons un espace métrique compact sur lequel f se relève en une application continue. Cet espace nous permet de prouver un principe variationnel qui est par exemple valable pour les applications méromorphes génériques de P^2(C).

Un principe variationnel pour les applications méromorphes  Version PDF

Vincent Millot (LJLL, Paris 7)
Régularité partielle des applications harmoniques fractionnaires à valeurs sphère

Plus d'infos...

Lieu : IMO ; salle 3L8.

Résumé : Dans cet exposé, je présenterai quelques résultats récents sur la régularité partielle des applications harmoniques fractionnaires à valeurs dans une sphère, c’est à dire des points critiques sous contrainte d’une semi-norme de Sobolev H^s pour s entre 0 et 1. Je présenterai également leur lien avec les surfaces minimales à frontière libre et les surfaces minimales non locales.

Régularité partielle des applications harmoniques fractionnaires à valeurs sphère  Version PDF