30 novembre 2017

Plus d'infos...

Programme : La rencontre annuelle du GDR Géométrie Noncommutative intitulée « Arbre de Noël 2017 du GDR GNC » aura lieu à Orsay les 30 novembre et 1er décembre. Voici la page web de la rencontre :
https://cyrilhoudayer.com/arbre-de-noel-2017-gdr-gnc/

 

Andrei Shafarevich (Moscow State University)
Laplacians and wave equations on polyhedral surfaces

Plus d'infos...

Lieu : Salle 121-123, bâtiment 425

Résumé : Differential operators on polyhedral surfaces are intensively studied during last decades. Many papers are devoted to such topics as spectral theory, determinants, trace formulas etc. Nice properties of such operators are due to the fact that polyhedra are almost everywhere flat ; on the other hand, there appear interesting effects caused by the singularities (vertices). In the talk, we present some results concerning various properties of Laplacians and the behavior of solutions to wave equations on polyhedral surfaces.

Laplacians and wave equations on polyhedral surfaces  Version PDF

Youcef Mammeri (LAMFA, Université de Picardie)
Du phloème au paysage

Jussi Behrndt (TU Graz)
Selfadjoint realizations of the Laplacian on bounded Lipschitz domains

Plus d'infos...

Lieu : Bât 425, salle 113-115

Résumé : In this talk we discuss the selfadjoint realizations of the Laplacian on bounded Lipschitz domains with the help of Dirichlet and Neumann boundary conditions. One of the key difficulties is to establish the existence and the mapping properties of the Dirichlet and Neumann trace map on the domain of the maximal operator. We pay special attention to Robin type boundary conditions and we also discuss less standard realizations of the Laplacian, as e.g. the Krein-von Neumann extension and its spectral asymptotics.
This talk is based on joint work with Fritz Gesztesy and Marius Mitrea.

Selfadjoint realizations of the Laplacian on bounded Lipschitz domains  Version PDF