29 novembre 2017

Mercredi 29 novembre 14:00-17:00 Marc Olive (ENS Cachan)
Le tenseur d’Elasticité et les invariants de formes binaires

Plus d'infos...

iCal

Lieu : Salle 113-115

Résumé : L’espace des tenseurs d’élasticité, qui intervient en mécanique des milieux continus, hérite d’une action naturelle du groupe SO(3,R) des rotations de l’espace. Une famille génératrice des invariants polynomiaux de cet espace permet de caractériser les matériaux élastiques, car les paramètres élastiques ne sont définis que modulo une rotation de l’espace.
Pour obtenir une famille génératrice explicite d’une telle algèbre d’invariants, on passe par une complexification du problème, ce qui fait intervenir le revêtement universel SL(2,C) du groupe SO(3,C). Les représentations du groupe SL(2,C) nous amène à considérer des algèbres d’invariants de formes binaires (polynômes homogènes en deux variables complexes). Une fois revisité un algorithme de Gordan sur les formes binaires, nous obtenons finalement une famille génératrice minimale de 299 invariants pour l’espace des tenseurs d’élasticité.

Le tenseur d’Elasticité et les invariants de formes binaires  Version PDF

Mercredi 29 novembre 16:00-17:00 Markus Holzmann (TU Graz)
Self-adjoint Dirac operators with boundary conditions on domains

Plus d'infos...

iCal

Lieu : salle 229, bâtiment 440

Résumé : Let \Omega \subset\mathbb{R}^3 be a domain with compact C^2-smooth boundary.
In this talk we discuss Dirac operators on \Omega acting on functions which satisfy
suitable boundary conditions which yield self-adjoint operators in L^2(\Omega; \mathbb{C}^4).
Such operators are the relativistic counterparts of Laplacians on \Omega with Robin-type boundary conditions. Using a boundary triple approach the self-adjointness of the operators can be shown.
It turns out that there exist critical boundary values for which functions in the domains of the corresponding operators have less Sobolev-regularity.
Furthermore, several basic spectral properties of the operators are obtained,
which can be analyzed and formulated in terms of well-studied integral operators for the Dirac equation.
This talk is based on a joint work with J. Behrndt and A. Mas.

Self-adjoint Dirac operators with boundary conditions on domains  Version PDF