Zoologie dans la famille de Hénon : bébés jumeaux et hirondelles de Milnor

Jeudi 22 novembre 2018 14:00-15:00 - Pierre Berger - Université Paris XIII

Résumé : Nous étudions les familles (f_a, b)_a, b d’allure Hénon de classe C^d,r avec deux paramètres (a,b)∊R^2. Nous montrons l’existence d’un ouvert de paramètres (a,b)∊D, tel qu’une carte de renormalisation conjugue un itéré de f_a, b avec une perturbation de (x,y) ↦ ((x^2+c_1)^2+c_2,0). Nous prouvons que l’application (a,b)∊D ↦ (c_1,c_2) est un difféomorphisme de classe C^d ; tel que conjecturé numériquement par Milnor in 1992.
De plus, nous montrons l’existence d’un ouvert de paramètres (a,b) tels que f_a, b ait exactement deux applications d’allure Hénon qui attirent Lebesgue p.t. point ayant une orbite (en avant) bornée. Une grande liberté dans le choix du paramètre renormalisé nous permet d’en déduire l’existence d’une application Hénon ayant exactement 2 puits (une solution à une question de Lyubich).
La preuve est basée sur une généralisation des pièces de puzzle pour les applications d’allure Hénon, et une généralisation des formalismes allure affine de Palis-Yoccoz et de l’application croisée de Shilnikov. Les bornes sur la distorsion nous permettent d’obtenir une renormalisation de la famille en classe C^d,r et donc sans perte de régularité.

Lieu : Institut de Mathématique d’Orsay, salle 2L8

Zoologie dans la famille de Hénon : bébés jumeaux et hirondelles de Milnor  Version PDF