Vers la classification des géométries

Mercredi 27 mars 14:00-17:00 - Andrei Moroianu - Orsay

Résumé : A la différence du cas des connexions sans torsion, dont les groupes d’holonomie possibles sont classifié-es par les théorèmes de Berger-Simons (dans le cas m-étrique) et Merkulov-Schwachhöfer (dans le cas général), rien ou presque n’est connu sur les groupes d’holonomie des connexions -à torsion. Dans cet exposé je vais présenter une stratégie de classification dans le cas des connexions m-étriques -à torsion parallèle et totalement anti-symétrique. C’est un cas important qui apparaît naturellement dans plusieurs contextes riemanniens, comme par exemple sur les espaces homogènes naturellement réductifs, sur les variétés de Sasaki, ou sur les variétés nearly Kähler, où une connexion -à torsion semble mieux adaptée que la connexion de Levi-Civita. Je vais montrer que toute variété riemannienne admettant une connexion m-étrique à torsion parallèle et anti-symétrique est l’espace total d’une submersion riemannienne -à fibres totalement géodésiques homogènes, dont la base possède -également une connexion métrique à torsion parallèle et anti-symétrique (-éventuellement nulle), ainsi qu’un -fibré principal à courbure parallèle. Il s’agit d’un travail en collaboration avec Uwe Semmelmann et Richard Cleyton. -

Lieu : Salle 3L8

Vers la classification des géométries  Version PDF