Spectre de matrices aléatoires : aspects analytiques de l’indépendance des trafics et liberté avec amalgamation

Jeudi 7 juin 2018 14:00-15:00 - Camille Male - Université de Bordeaux

Résumé : La théorie des probabilités libres, inventée par Voiculescu dans les années 80, est un outil robuste pour l’étude spectrale des grandes matrices aléatoires. Dans un contexte non commutative, la liberté joue le rôle de l’indépendance statistique. Ce simple parallèle produit une théorie très riche, avec des analogues de nombreux concepts de probabilités. L’indépendance libre décrit les limites de grandes matrices aléatoires indépendantes dans des situations génériques, en particulier pour les matrices unitairement invariantes et les matrices de Wigner.
Cependant de nombreux modèles de matrices échappent à cette théorie. C’est pour s’adapter à ces modèle que fut créée la théorie des trafics. Celle-ci étend la théorie des probabilités non commutatives, en étant munie d’une notion d’indépendance plus riche. Les matrices aléatoires invariantes par conjugaison par des matrices de permutation constituent le modèle canonique de matrices asymptotiquement indépendantes au sens des trafics.
L’objectif de cet exposé est de donner une introduction à ce sujet et de présenter une découverte récente, offrant les premières perspectives analytiques de la théorie : les matrices aléatoires permutation invariantes sont asymptotiquement libres avec amalgamation sur l’espace des matrices diagonales.

Lieu : salle 3L15

Spectre de matrices aléatoires : aspects analytiques de l’indépendance des trafics et liberté avec amalgamation  Version PDF