Flots géodésiques Anosov, systèmes articulés et billards

Jeudi 11 février 2016 14:00-15:00 - Mickaël Kourganoff - ENS Lyon

Résumé : Considérons un ellipsoïde et faisons tendre l’un de ses trois axes vers zéro : l’ellipsoïde s’aplatit et se rapproche d’une ellipse dans le plan formé par les deux autres axes. Comme l’avait remarqué Birkhoff, le flot géodésique sur l’ellipsoïde converge vers le flot de billard sur l’ellipse. En fait, ce phénomène est bien plus général : on énoncera un théorème analogue qui s’applique à presque n’importe quelle surface de R^3 que l’on aplatit selon un axe. De plus, si le billard obtenu à la limite est dispersif, alors le flot géodésique sur la surface est Anosov (les deux systèmes présentent alors le même type de dynamique chaotique). On utilisera enfin ce dernier résultat pour donner un nouvel exemple concret de système physique Anosov, un système articulé à cinq tiges.

Lieu : Bâtiment 425, salle 121-123

Flots géodésiques Anosov, systèmes articulés et billards  Version PDF