Slovak spaces and dynamical compactness

Jeudi 16 mars 2017 14:00-15:00 - Sergiy Kolyada - Institute of Mathematics, NAS of Ukraine / Max-Planck-Institut für Mathematik, Bonn

Résumé : The area of dynamical systems where one investigates dynamical properties that can be described in topological terms is called « Topological Dynamics ». Investigating the topological properties of spaces and maps that can be described in dynamical terms is in a sense the opposite idea. This area is called « Dynamical Topology ».
We will speak on two new notions : « Slovak Space » and « Dynamical Compactness » for (discrete) dynamical systems given on compact metric spaces with continuous (surjective) self-maps. Slovak Space is a dynamical analogue of the Rigid Space (by Johannes de Groot and Howard Cook). Dynamical Compactness is a new concept of
chaotic dynamical systems. In particular, we will show that all dynamical systems are dynamically compact with respect to a Furstenberg family if and only if this family has the finite intersection property.

Lieu : Bâtiment 425, salle 121-123

Notes de dernières minutes : Pas de café culturel.

Slovak spaces and dynamical compactness  Version PDF