Rotations quantiques aléatoires et convergence abrupte

Lundi 11 février 14:00-15:00 - Amaury Freslon - Université Paris-Sud

Résumé : Le phénomène de convergence abrupte (« cut-off » en anglais) a été découvert et étudié par P. Diaconis et ses co-auteurs depusi les années 80. Il s’agit d’un comportement surprenant des marches aléatoires sur certains groupes finis ou compacts : pendant un certain temps, la marche reste très loin de la distribution uniforme puis, soudain, elle converge exponentiellement rapidement vers cette dernière. Un exemple particulier consiste à prendre des rotations planes aléatoires dans R^N d’angle fixé et à les composer, produisant ainsi une marche aléatoire sur le groupe orthogonal. Rosenthal (1991) et Hough-Jiang (2017) ont montré qu’il y a convergence abrupte à un temps de l’ordre de Nln(N). Dans cet exposé, je présenterai un analogue de cette marche aléatoires sur des groupe quantique orthogonaux et montrerai que la convergence abrupte se produit exactement au même moment que pour le cas classique.

Lieu : Salle 2P8

Rotations quantiques aléatoires et convergence abrupte  Version PDF