Représentations maximales et groupes de Schottky

Jeudi 23 novembre 2017 14:00-15:00 - Jean-Philippe Burelle - IHES

Résumé : Les espaces de représentations maximales du groupe fondamental d’une surface sont des généralisations de l’espace de Teichmüller. Ces représentations sont à valeurs dans Sp(2n,R) (ou plus généralement dans un groupe de Lie de type hermitien). Je définirai une notion de groupe de Schottky agissant sur un espace muni d’un ordre partiel cyclique, puis j’expliquerai comment appliquer cette construction à l’espace des Lagrangiens dans R^(2n). Il s’avère que les groupes de Schottky, dans ce cas, correspondent exactement aux images de représentations maximales d’une surface à bord non vide. Le contenu de cet exposé provient d’une collaboration avec Nicolaus Treib.

Notes de dernières minutes : Café culturel à 13h par Jean Lécureux

Représentations maximales et groupes de Schottky  Version PDF