Quantification d’espaces de modules de connexions

Mercredi 23 janvier 14:00-17:00 - Gabriele Rembado - ETH Zürich

Résumé : Les espaces de modules de connexions plates au-dessus de surfaces de Riemann constituent les espaces des champs de plusieurs théories de jauge classiques, telles que la théorie de Chern-Simons compacte (connexions unitaires) ou complexe (connexions à groupe de jauge complexe réductif). Leur quantification géométrique amènerait alors à des constructions mathématiquement rigoureuses de théories quantiques des champs qui admettent ces importantes théories de jauge comme limites semiclassiques.
Ce programme a été achevé par Hitchin & Axelrod-Della Pietra-Witten pour la théorie de Chern-Simons compacte, avec la construction de la connexion de Hitchin. L’analogue de cette construction dans le cas d’un groupe de jauge complexe reste en pleine généralité une question ouverte.
Un deuxième formalisme pour la quantification de la théorie de Chern-Simons est le modèle de Wess-Zumino-Witten en théorie conforme des champs, ce qui est mathématiquement équivalent à la quantification d’espaces de modules de connexions méromorphes à pole simples. Plus récemment ceci a été généralisé avec l’introduction d’espaces de blocs conformes irréguliers, a priori liés à la quantification d’espaces de modules de connexions méromorphes à singularités irrégulières. La construction explicite d’une telle quantification reste une question ouverte.
Dans la première partie de cet exposé on rappellera les étapes principales de cette histoire.
Dans la seconde partie on décrira deux extensions dans les directions des deux questions ouvertes mentionnées ci-dessus :
1) la construction explicite de la connexion de Hitchin pour la quantification géométrique d’un espace de module de connexion holomorphes sur le tore ;
2) la quantification par déformation d’une connexion d’isomonodromie pour connexions méromorphes à singularités irrégulières sur la sphère.

Lieu : Salle 3L8

Quantification d’espaces de modules de connexions  Version PDF