Résumé : In this talk, we show that using repulsive random variables, it is possible to build Monte Carlo methods that converge faster than vanilla Monte Carlo. More precisely, we build estimators of integrals, the variance of which decreases as $N^-1-1/d$, where $N$ is the number of integrand evaluations, and $d$ is the ambient dimension. To do so, we propose stochastic numerical quadratures involving determinantal point processes (DPPs) associated to multivariate orthogonal polynomials. The proposed method can be seen as a stochastic version of Gauss’ quadrature, where samples from a determinantal point process replace zeros of orthogonal polynomials. Furthermore, integration with DPPs is close in spirit to randomized quasi-Monte Carlo methods, leveraging repulsive point processes to ensure low discrepancy samples.
Lieu : salle 3L15
![]()
Département de Mathématiques
Bâtiment 307
Faculté des Sciences d'Orsay Université Paris-Sud F-91405 Orsay Cedex Tél. : +33 (0) 1-69-15-79-56
Département
Actualités
Les membres
Contacts
Présentation en images des maths à Orsay
Les Maths à Orsay de 1958 à nos jours
Diffusion des mathématiques
Offres d’emploi
Comité Parité du LMO
Fermeture du département
Fermeture du département
Laboratoire
|