Modélisation à l’aide d’équations différentielles stochastiques à effets aléatoires

Jeudi 8 juin 14:00-15:00 - Charlotte Dion - Univ. Paris 1

Résumé : Les équations différentielles stochastiques avec effets aléatoires sont utiles pour décrire des processus en temps continu dont les répétitions ont une forme fonctionnelle commune mais présentent une grande variabilité entre chaque observation. C’est le cas des données de potentiel neuronal par exemple. Dans notre modèle, les différences entres les observations sont alors dues à la réalisation du mouvement Brownien et de l’effet aléatoire. Mieux connaître ces effets aléatoires et notamment leur loi, nous permettrait d’avoir une meilleure modélisation du phénomène observé.
Dans cet exposé nous traiterons d’abord du modèle d’Ornstein-Uhlenbeck à un effet aléatoire dans le coefficient de dérive. A partir de N trajectoires observées de manière continue sur un intervalle de temps [0,T] assez grand, nous verrons comment estimer la densité d’intérêt en construisant un estimateur adaptatif à partir d’une méthode introduite par Goldenshluger et Lepski (2011).
Puis nous étudierons le cas plus général d’un modèle avec une diffusion non constante et avec plusieurs effets aléatoires. Notre propos sera illustré à l’aide du package R : mixedsde qui regroupe nos méthodes.
Enfin, de nouvelles directions de recherche seront introduites dans la continuité du travail présenté.

Lieu : Salle 117-119

Modélisation à l’aide d’équations différentielles stochastiques à effets aléatoires  Version PDF