Maximum and antimaximum principles : beyond the first eigenvalue

Mardi 18 octobre 2016 14:00-15:00 - Jean-Pierre Gossez - Université Libre de Bruxelles

Résumé : Consider the Dirichlet problem

-\Delta u = \mu u + f ~; in ~; \Omega, \, u=0 ~; on ~; \partial \Omega,

with \Omega a smooth bounded domain in I~!~!R^N.
The well-known maximum and antimaximum principles give informations on the sign of the solution u when the parameter  \mu varies near the first eigenvalue \lambda_1 of the corresponding homogenous problem. Our purpose in this talk is to introduce an analogue of these two principles when \mu varies near a higher eigenvalue \lambda_k. Nodal domains play a central role in our study, as well as, in some cases, the Payne conjecture relative to the nodal line of a second eigenfunction in the plane. (Joint work with J. Fleckinger and F. de Thélin from Toulouse, France).

Lieu : Salle 113-115 (Bâtiment 425)

Maximum and antimaximum principles : beyond the first eigenvalue  Version PDF