La compatibilité locale-globale modulo p pour GLn(Qp) dans le cas ordinaire

Mardi 20 mars 2018 15:00-15:30 - Zicheng Qian - LMO

Résumé : This talk is about a joint work with Chol Park. We fix a finite extension F of F_p. In mod p Langlands correspondence, starting with \overline{\rho} : \mathrm{Gal}(\overline{Q_p}/Q_p) \rightarrow \mathrm{<span class="caps">GL</span>}_n(F), one can define a smooth admissible F representation \Pi(\overline{\rho}) of \mathrm{<span class="caps">GL</span>}_n(Q_p) through some global method. Our work shows that an explicit stratey in \Pi(\overline\rho) determines the isomorphism class of \overline\rho if \overline\rho is Fontaine Laffaille, ordinary and sufficiently generic in a precise sense.

Lieu : IMO, salle 3L15

Notes de dernières minutes : Journée de doctorants

La compatibilité locale-globale modulo p pour GLn(Qp) dans le cas ordinaire  Version PDF