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Chapter 1

Dynamic Sender-Receiver Game

1.1 Introduction

A sender-receiver game is a special class of game of incomplete information. It models strategic
interactions between an informed expert and an uninformed decision maker. It consists of a set
of states S. A state s is chosen randomly by nature with a prior probability p. The sender is
informed about the state s while the receiver is not. The sender then chooses a message a ∈ A
to be sent to the receiver. The receiver, who is unaware about the true state, after receiving
the message a plays action b ∈ B. The sender and the receiver get payoff u1(s, b) and u2(s, b)
respectively. Note that the payoff function does not depend on the message a sent by the sender.

The behaviour strategy σ of the sender is a mapping from the set of states S to the set
of mixed messages ∆A (σ : S → ∆A). While the behaviour strategy τ of the receiver is a
mapping from the set of messages A to the set of mixed actions ∆B (τ : A→ ∆B).

There always exists a babbling equilibrium where the sender transmits a constant message
that is independent of the true state. The receiver’s strategy is to play the action that maximizes
the expected payoff given prior probability, irrespective of the sender’s message. The babbling
payoff v2 is given by:

v2 = max
b∈B

∑
s∈S

p(s)u(s, b)

Apart from this, there might also exist other equilibria. A fully revealing equilibrium cor-
responds to the sender sending a different signal ms for each state s, i.e, σ(θs) = ms and if
θs 6= θ

′
s then ms 6= m

′
s. A partially revealing equilibrium corresponds to one where the sender

discloses some information regarding the state. The transmission is not 1-1 like the fully re-
vealing equilibrium but also not a constant mapping like the babbling equilibrium. Consider
the following game :

Receiver

L M R

s0 1, 1 0, 0 0, 0

States s1 0, 0 1, 0 0, 1

s2 0, 0 0, 1 1, 0

The set of states is given by S = {s0, s1, s2} and each state has an equal probability of
being chosen. The set of messages and actions is given by A = {ŝ0, ŝ1, ŝ2} and B = {L,M,R}
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respectively. Consider the babbling equilibrium, the sender does not reveal anything about
the states. All the actions L,M and R of the receiver achieve the same payoff. Thus, the
babbling equilibrium payoff is given by (1

3
, 1
3
). Next, consider the the fully revealing strategy of

the sender. The sender sends the message ŝ0, ŝ1 and ŝ2 at the states s0, s1 and s2 respectively.
The best reply of the player is to play L at ŝ0, R at ŝ1 and M at ŝ2. Notice that this is not a
equilibrium, as the sender strictly prefers sending message ŝ0 as compared to ŝ1 or ŝ2. Hence,
there is no fully revealing equilibrium. Finally, consider the strategy where the sender reveals if
the state is s0 or not. So, σ(s0) = m1 and σ(s1) = (s2) = m2. The best response of the receiver
is given by τ(m1) = L and τ(m2) = M or τ(m2) = R. The receiver plays the best action
corresponding to his belief of the true state. The sender also is indifferent between sending the
message m1 or m2. Hence, this is an equilibrium.

The first model of sender-receiver game was developed by Crawford and Sobel in [1]. The
model described information transmission through a noisy channel. In [2], Golosov et al. con-
sider repeated rounds of play. The sender sends messages repeated to the receiver who then
takes actions. They consider the case when the state of the nature remains fixed. Renault,
Solan and Vieille consider a dynamic version of this repeated play in [7]. In this model the
state process is not constant but rather follows a Markov chain. They are able to characterize
the limit set of equilibrium payoffs in the model. The equilibrium payoffs satisfy an individual
rationality condition for the receiver, and an incentive compatibility condition for the sender.

In this report, we obtain the same characterization as in [7] but in the case of uniform
equilibria. We also try to extend the model to the case of imperfect monitoring. In this model,
the sender does not directly observe the action of the receiver but rather observes an action
dependent signal.

1.2 Model

At each stage n, the game is in state sn. The sender is aware of the true state and sends a
message an ∈ A to the receiver. The receiver, who does not know the true state, takes an
action bn ∈ B based on the sender’s message. The action bn is publicly disclosed and players
get stage payoff u1(sn, bn) and u2(sn, bn) respectively. The game then proceeds to the next
stage sn+1 according to the transition matrix P (sn+1 | sn). The state process {sn}n∈N follows
a Markov chain, which is irreducible and aperiodic. The unique invariant measure is given by m.

The game is determined by the following components:

• S: States of nature.

• A: action set for sender, B: action set for receiver.

• u(s, b) ∈ R2, where u1(s, b) gives the stage payoff for the sender and u2(s, b) gives the
stage payoff for the receiver.

• P ∈ RS×S: Transition matrix

The strategies of the sender and receiver map information they have to their possible actions.
For the sender this is a mapping from the set of past and current states along with the past
actions of both the players to possible messages: σn : (S×A×B)n−1×S → ∆A. For the receiver
it is a function which maps past messages and actions to possible actions τn : (A×B)n−1 → ∆B.
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Denote by σ1(a1 | s1) the probability that the sender chooses a1 in the first stage when the state
is s1 and by σn(an | s1, a1, b1, ..., sn−1.an−1, bn−1) the probability that the sender chooses an in
the nth stage conditioned that the previous states and actions were s1, a1, b1, ....sn−1, an−1, bn−1.
In case of the receiver, the action is conditioned only on past actions and not states. Using
this, we define the probability measure over the n-period history Hn. The probability that the
sequence of states and actions hn = s1, a1, b1, ...sn, an, bn takes place is given by the following
equation.

Pσ,τ (hn) = P (s1)× σ1(a1 | s1)× τ1(b1|a1)× ....× P (sn | sn−1)× σt(an | hn−1, sn)× τn(bn | a1, b1, ..., an)

The probability measure for the the T−period repeated game forms a basis for the infinite
game. Let us denote with H, the collection of all plays in the infinite repeated game. Each play
is an infinite sequence of states and actions {sn, an, bn}{n∈N} . Let (Xn)n∈N be a sequence of
finite sets, and let X∞ =

∏
n∈NXn. An element Y ∈ X∞ is called a cylinder set if there exists

N ∈ N and (Yn)Nn=1 such that Yn ⊂ Xn and B = (
∏N

n=1 Yn) × (
∏∞

n=N+1X
n). The σ-algebra

Y generated by the cylinder sets forms the measurable space over X∞. Using this σ−algebra
there exists a unique extension extending the probability distribution P n

σ,τ over finite history
Xn to the probability distribution Pσ,τ over the measurable space (X∞,Y) such that

Pnσ,τ (A) = Pσ,τ (A×Xn+1 × ....) ∀n ∈ N,∀A ∈ Xn

This defines a well defined probability measure over the entire play. In our model, Xn =
Sn × An × Bn and X∞ =

∏
n∈N(Sn × An × Bn). The payoff is given by the expectation of the

δ−discounted payoff:

γδ(σ, τ) = Eσ,τ [(1− δ)
∞∑
n=1

δn−1u(sn, bn)]

1.3 Results

Consider M ⊂ ∆(S × A) such that the marginal distributions over S and A are equal to m,
the invariant measure of the Markov chain. Given a copula µ ∈ M and a stationary strategy
y : A→ ∆B we define:

U(µ, y) :=
∑

s∈S,a∈A

µ(s, a)u(s, y(· | a)) ∈ R2 (1.1)

This corresponds to the expected (undiscounted) payoff when the sender and receiver use
stationary strategies given by µ(· | s) and y respectively. And let us denote by v2 the babbling
equilibrium payoff for the receiver.

v2 = max
b∈B

∑
s∈S

m(s)u2(s, b) (1.2)

Denote by E(M), the payoff vectors U(µ0, y) that satisfy

C1. U1(µ0, y) ≥ U1(µ, y) for every µ ∈M (Incentive Compatibility)
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C2. U2(µ0, y) ≥ v2 (Individual Rationality)

A uniform equilibrium payoff γ∗ = (γ1∗ , γ
2
∗) is a vector such that for every ε > 0 there

exists a δ0 and strategy profile (σε, τε) such that ∀δ > δ0

γ1δ (σε, τε) + ε ≥ γ1∗ ≥ γ1δ (σ
′, τε)− ε ∀σ′ (1.3)

γ2δ (σε, τε) + ε ≥ γ2∗ ≥ γ2δ (σε, τ
′)− ε ∀τ ′ (1.4)

Let us denoted by UEQ the set of all uniform equilibria of the game. In Theorem 1, we
shall prove that the set of uniform equilibria UEQ contains E(M). In Theorem 2, we shall
show the converse holds under certain assumptions.

1.3.1 Example

We now present an example presented in [7] to demonstrate the results. Consider the following
game:

Receiver

L M R

s0 1, 1 0, 0 0, 0

States s1 0, 0 1, 0 0, 1

s2 0, 0 0, 1 1, 0

There are three states s0, s1 and s2. We assume each successive stage is independent and
identically distribution. Each state is equally likely to be picked. Thus, we have P (sn+1 |
sn) = 1

3
for each sn, sn+1 ∈ S The initial state distribution is given by the invariant measure

m(s) = 1
3
∀s ∈ S. To obtain the extreme points of set of feasible payoffs, we consider all the

strategies where the sender tells the truth and the receiver plays a pure state dependent action.

y0(s0) = M, y0(s1) = L, y0(s2) = L U(µ0, y0) = (0, 0)

y1(s0) = L, y1(s1) = M, y1(s2) = R U(µ0, y1) = (1,
1

3
)

y2(s0) = L, y2(s1) = R, y2(s2) = M U(µ0, y2) = (
1

3
, 1)

y3(s0) = M, y3(s1) = M, y3(s2) = R U(µ0, y3) = (
2

3
, 0)

y4(s0) = M, y4(s1) = R, y4(s2) = M U(µ0, y4) = (0,
2

3
)

The set of feasible payoff is given by conv(S) where S = {(0, 0), (1, 1
3
), (1

3
, 1), (2

3
, 0), (0, 2

3
)}.

Now, we get the set of equilibrium payoffs E(M). We first calculate the babbling payoff v2.
When the sender babbles, all the receiver’s action results in the same payoff, which equals 1

3

. So, the condition C2 becomes γ2 ≥ 1
3
. For the sender, we use the symmetry of the payoff

matrix to obtain the condition C1. We first show that its necessary to have γ1 ≥ γ2. We then
show that this condition is sufficient. Consider the copula µ

′
where the states s1 and s2 are

exchanged. From the payoff matrix, we have U1(µ
′
, y) = U2(µ0, y) and U1(µ0, y) = U2(µ

′
, y).
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The condition C2 implies γ1 ≥ γ2. For the sufficiency part, we show that the extreme points of
the region satisfying γ2 ≥ 1

3
and γ1 ≥ γ2 indeed belong to E(M). The extreme points is given

by the set C = {(1
3
, 1
3
), (1, 1

3
), (2

3
, 2
3
)}. Firstly, the payoff (1

3
, 1
3
) corresponds to the babbling

payoff and satisfies C1 and C2. The payoff (1, 1
3
) , obtained by playing y1, is the maximum

payoff the sender can achieve and so we have U1(µ0, y1) ≥ U1(µ, y1) ∀µ ∈ M. The payoff
(2
3
, 2
3
) is achieved when the receiver plays L in the state s0 and plays the mixed action M+R

2

in the states s1 and s2. The key point is that the sender cannot profit by exchanging s0 with
either s1 or s2. Coupled with the fact that the receiver uses the same strategy for s1 and s2,
we see that (2

3
, 2
3
) indeed satisfies condition C1 and belongs to E(M). The set of equilibrium

payoffs E(M) is given by the dark triangle in the figure below.

1.4 Proofs

1.4.1 Theorem 1

E(M) ⊂ UEQ

Given a payoff U(µ0, y) and ε > 0 we will construct a strategy profile (σ, τ) such that for
every δ ≥ δ0 it is an ε−equilibrium in the δ−discounted infinite game. The set of stages are
divided into consecutive blocks of increasing lengths B1, ..., Bm, where m ∈ N. After each
block, the players forget the past states and actions, and start fresh. We use block strategies
and divide the play into “normal blocks” and “punishment blocks”. Block strategies were first
used to obtain folk theorem with uniform equilibria in [5] and [6] by Lehrer.

In the normal block, the strategy σ of the sender is to speak the truth and report the true
state s. While the strategy τ of the receiver is to listen to the sender’s announcement a in
stage n and play the mixed action y(· | a), as long as no state is reported too often. As soon
a state is reported too often, the receiver replaces the sender’s report with a fictitious report θ
and plays y(· | θ).

At the end of the block the sender imposes a statistical test to check whether the receiver
has deviated or not from his described strategy. If the receiver has not deviated the game
proceeds to another normal block, else the game proceeds to a punishment phase. This phase
consists of a series of punishment blocks. After the punishment phase, the game again returns
to a normal block. The increase in block lengths allow the statistical test to get more accurate
as the game progresses.

6



In the punishment phase, the sender does not provide any information about the state. The
receiver resorts to playing the action corresponding to the babbling payoff v2. If the receiver
fails the test in block m, then he is punished for the next m2 blocks.

We now define the construction of the fictitious states. Let mN ∈ ∆S be the best “integral”
approximation to the invariant measure m. By this we mean that out of all distributions
m′ ∈ ∆S such that Nm′(s) is an integer ∀s ∈ S, mN is the best approximation to m. For each
s ∈ S denote by Nn(s) = |{k ≤ n : ak = s}| the number of stages till stage n when state s was
reported. The key idea is that the receiver keeps a check on the number of times a state has
been reported. If a reported state crosses its quota, then the receiver substitutes the reported
state with the fictitious state. This enforces that the distribution of announcements is always
equal to mN . The threshold for a N−stage block is defined as:

q := min{1 ≤ n ≤ N : Nn(an) > NmN(an)}

The sequence θn satisfies:
F1. θn = an for n < q
F2. For each s ∈ S, the equality |{n ≤ N : θn = s}| = NmN(s) always hold.
F3. Conditional on (a1, ..aq) the variables (θq, ..., θN) are deterministic.

We will refer to θn as the announcement at stage n.

On the other hand, the sender at the end of the each normal block checks if the the dis-
tribution of the receiver’s action is within an εm−neighbourhood of the expected distribution.
The sender counts the number of times the receiver plays action b when the announcement was
s. To do this, we define the random variable N s(b) = |{k ≤ |Bm| : θk = s, bk = b}|, the number
of stages in the block m where the action was b corresponding to the announcement s. The
sender expects action b to be played m(s)y(b|s)|Bm| times for the announcement s during the
block. To avoid punishment, the receiver’s strategy has to satisfy the following test:

| 1

|Bm|
N s(b)−m(s)y(b | s)| ≤ εm ∀s ∈ S, b ∈ B (1.5)

We show below that by choosing appropriate block lengths and error margins, the strategy
profile (σ, τ) ensures that the set of blocks when the play is not in normal blocks is almost
surely finite. This will ensure that the strategy profile achieves the payoff U(µ0, y) when δ → 1.
We choose |Bm| = m10 and εm = 1

m2 .

Lemma

lim
δ→1

γδ(σ, τ) = U(µ0, y)

Proof For each block m we define the following event

Dm = {Bm is a normal block}

Fix a m where Bm−1 is a normal block. We now calculate the conditional probability that
the next block Bm is not a normal block.
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Pσ,τ (Dcm | Dm−1) = Pσ,τ (|
1

|Bm|
N s(b)−m(s)y(b | s)| ≥ 1

m2
| Dm−1) for some s ∈ S, b ∈ B

We use the generalized Tchebychev’s inequality proved in [5] to find an upper bound on
this term:

Lemma Let R1, ..., Rn be a sequence of identically distributed Bernoulli random variables,
with parameter p. Let Y1, ...., Yn be a sequence of Bernoulli random variables such that for each
i < m < n,Rm is independent of R1, ...., Rm−1, Y1...., Ym. Then

P(|R1Y1 + ...+RnYn
n

− pY1 + ...+ YN
n

| ≥ ε) ≤ 1

nε2
for every ε > 0

Define Ri = 1 if the state is s in stage i else Ri = 0. As we have the initial distribution
s0 = m(s), we have that Ri = 1 with probability m(s) and is a Bernoulli random variable.
Also, define Yi = 1 if the receiver takes the action b given that the state is s in stage i. This
again is a Bernoulli random variable with mean y(b | s). Define xi as Yi

|Bm| . We thus have

Pσ,τ (|
1

|Bm|
N s(b)−m(s)

|Bm|∑
n=1

xn| ≥
1

m2
| Dm−1) ≤

m4

|Bm|
=

1

m6

We can now use the Borel-Cantelli Theorem to show that number of punishment phases are
finite almost surely and that there exists a random m1 ∈ N such that for all m ≥ m1 the game
is in normal blocks.

Lemma Suppose that {An : n ≥ 1} is a sequence of events in a probability space. If

∞∑
n=1

P (An) <∞,

then P (A(i.o.)) = 0; only a finite number of the events occur, with probability 1.

∞∑
n=1

P(Dcn+1 | Dn) =
∞∑
n=1

1

n6
<∞

So we get

P( lim
n→∞
Dcn+1 ∩ Dn) = 0

Hence, after a certain block m1 there will be no punishment phase. Now, we show the
strategy profile (σ, τ) leads to a payoff arbitrary close to U(µ0, y) when δ is close to 1. The
main idea is that the expected (undiscounted) payoff is equal to U(µ0, y) in the normal blocks.
Combining this with the fact that the the punishment blocks are almost surely finite, the dis-
counted payoff converges to U(µ0, y) as δ → 1.
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We first show that the expected payoff in the normal blocks is in the ε-neighbourhood of
U(µ0, y) when δ tends to 1. Denote by µσ,τ the expected (undiscounted) joint distribution of
states and announcements in the Bm-stage game:

µmσ,τ (s, a) = Eσ,τ [
1

|Bm|

|Bm|∑
n=1

1{sn=s,θn=a}]

From the definition of the strategy profile (σ, τ), we get the expected (undiscounted) pay-
off in the normal block m is equal to U(µmσ,τ , y). When we consider infinite repetitions of
the the block strategy, we get that γNδ (σ, τ) converges to U(µσ,τ , y) as δ approaches 1, where
µσ,τ = lim

m→∞
µmσ,τ (s, a) (γNδ (σ, τ) is the payoff obtained in the normal blocks). We show below

that µσ,τ is arbitrary close to µ0.

Now, we combine the above result with the fact that the number of punishment blocks are
finite almost surely. We show below that the total T -stage payoff converges to U(µσ,τ , y) and
use the lemma proved in [8] to show the δ−discounted payoff converges to the same limit.

Lemma Given an arbitrary sequence of real numbers (xt)t∈N, let x̄T = 1
T

∑T
t=1 x

t and
x̄δ = (1− δ)

∑∞
n=1 δ

t−1xt. Then

lim sup
T→∞

x̄T ≥ lim sup
δ→1

x̄δ ≥ lim inf
δ→1

x̄δ ≥ lim inf
T→∞

x̄T (1.6)

We have showed that after a certain random m1 ∈ N, only normal blocks remain. Thus, in
the infinite set of blocks, the number of punishments blocks are finite. And the expected payoff
during a normal block is equal to U(µσ,τ , y). Hence, we can conclude that

lim
T→∞

γ̄T (σ, τ) = U(µσ,τ , y)

⇒ lim
δ→1

γ̄δ(σ, τ) = U(µσ,τ , y)

We also know the reported and fictitious states match almost surely, i.e, ‖µσ,τ − µ0‖ ≤ ε.
This follows from the Ergodic theorem for strongly stationary processes presented in [3].

Lemma Let X = {Xn : n ≥ 1} be a strongly stationary process such that E|X1| ≤ ∞.
There exists a random variable Y with the same mean as the Xn such that

1

n

n∑
j=1

Xj → Y a.s and in mean (1.7)

The process X = {X(t) : t ∈ N} taking values in R, is called strongly stationary if the
families {X(t1), X(t2), ..., X(tn)} and {X(t1 + h), X(t2 + h), ...X(tn + h)} have the same joint
distribution for all t1, t2, ..., th and h ∈ N. Under the assumption that X0 = m, it can be shown
that the Markov chain is strongly stationary and converges almost surely to the invariant
measure m. Thus, we have that for any ε > 0 and η, there exists N0 such that ∀N ≥ N0.
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P(| 1
N

N∑
n=1

1{sn=s} −m(s)| > ε) < η ∀s ∈ S

1

N

N∑
n=1

1{sn=s} → m(s) a.s

Now, let’s calculate the probability when the joint distributions don’t match, i.e, P(|µσ,τ −
µ0| > ε)

P(| 1

|Bm|

|Bm|∑
n=1

∑
a∈A

1{sn=s,θn=a} −
1

|Bm|

|Bm|∑
n=1

1{sn=s,θn=s}| > ε) ∀s ∈ S

= P(
1

|Bm|

|Bm|∑
n=1

∑
a∈A

1{sn=s,θn 6=s} > ε) ∀s ∈ S

≤ P(| 1

|Bm|

|Bm|∑
n=1

1{sn=s} −m(s)| > ε

M
) ≤ η

′ ∀s ∈ S

Hence, after a certain block m2 ∈ N, we have the true and reported states matching almost
surely. This combined with the convergence of the payoff gives us the following relations.

‖γδ(σ, τ)− U(µσ,τ , y)‖ ≤ ε1 ∀δ ≥ δ0 (1.8)

‖U(µ0, y)− U(µσ,τ , y)‖ ≤ ε2 (1.9)

Hence, using (1.8) and (1.9), we get that γδ(σ, τ) can be brought arbitrary close to U(µ0, y)
when δ tends to 1.

Now that we have shown that the strategy profile (σ, τ) achieves the limiting payoff U(µ0, y),
we need to show that it is a uniform equilibrium. We first consider the deviations of the re-
ceiver. To do this, we first show that if any strategy of the receiver passes the test in block
Bm, then the payoff in the block is close to the payoff obtained when the players use (σ, τ). We
then show that if receiver gains in a block by failing the test, then the punishment is efficient
in restricting the future payoff. In the case of the sender, we use condition C1 to enforce that
truth telling is indeed optimal.

Theorem The payoff vector U(µ0, y) is a uniform equilibrium.

Proof We show that the receiver has no profitable deviation. First consider a strategy τ
′

of the receiver. It can be complex and thus depending on the random sequence of reports, it
may or may not pass the test. We show that if τ

′
passes the test in a block Bm , then the

expected gain in payoff cannot be much higher than when the receiver plays τ . We then show
that if the receiver gains a lot in the block Bm by failing the test, the punishment is efficient
to cut down on future payoffs.

We first show that the strategy τ
′

can be approximated by a stationary strategy ȳ to give
a similar payoff. Assuming τ

′
does not fail the statistical test in block Bm, we show that ȳ is

close to y. Assuming the strategy passes the test, we have the following relation
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| 1

|Bm|

|Bm|∑
n=1

1{sn=s,bn=b} −m(s)y(b | s)| ≤ 1

m2

We define the stationary strategy ȳ using the joint (undiscounted) distribution of states and
actions:

ȳ(b | s) =
1

m(s)|Bm|

|Bm|∑
n=1

1{sn=s,bn=b}

‖y(b | s)− ȳ(b | s)‖ ≤ 1

m2m(s)
∀b ∈ B, ∀s ∈ S

Now, let’s calculate the difference in payoffs in the block Bm when the receiver uses ȳ instead
of y:

=(1− δ)
m10∑
n=1

δn−1u(sn, ȳ)− (1− δ)
m10∑
n=1

δn−1u(sn, y)

=(1− δ)
m10∑
n=1

δn−1[u(sn, ȳ)− u(sn, y)]

=(1− δ)
m10∑
n=1

δn−1
∑
b∈B

u(sn, b)[ȳ(b | s)− y(b | s)]

≤(1− δ)
m10∑
n=1

δn−1
∑
b∈B

u(sn, b)
1

m2m(sn)

≤(1− δm10
)C

m2

So, using this we can conclude that the receiver cannot gain much without being detected
in a block. Next, we show that the punishment phase is efficient.

If the receiver fails the test in block Bm, he is punished for the next m2 blocks. In each of
the punishing block, the payoff cannot be greater than the babbling payoff v2. Consider the
blocks m,...., m2 +m, the limit of the stage payoffs when δ → 1 does not exceed v2 + εm, where
εm → 0 when m → ∞. We also know that the block payoffs when the players use strategy
profile (σ, τ) is approximately U(µ0, y) during the normal blocks and v2 during the punishment
block. Using condition C2, which states that U2(µ0, y) ≥ v2, it is easy to check that τ

′
cannot

be a profitable deviation against τ .

Now, let’s consider the possible deviations by the sender. Assume the sender uses strategy
σ

′
. The receiver listens to the reports of the sender until the quota is reached. So, in each

block Bm, we still have the announcements matching the quota limit. This ensures that the
joint distribution µ in every block belongs to the set of copulas M. So, we have
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µδ
σ′ ,τ

(s, a) = E[(1− δ)
∞∑
n=1

δn−11{sn=s,θn=a}] (1.10)

γδ(σ
′
, τ) = E[(1− δ)

∞∑
n=1

δn−1
∑

s∈S,a∈A

1{sn=s,θn=a}u(s, y(· | a))] (1.11)

γδ(σ
′
, τ) =

∑
s∈S,a∈A

µδ
σ′ .τ

(s, a)u(s, y(· | a)) (1.12)

So, the expected payoff when the sender’s report is drawn by µδ
σ′ ,τ

and the receiver plays

y is equal to U(µδ
σ′ ,τ

, y). But we know from (1.8) and (1.9) that if the players use strategy

profile (σ, τ) then the expected payoff can be brought arbitrary close to U(µ0, y) when δ ≥ δ0.
But from condition C1 we have U1(µ0, y) ≥ U1(µ, y) ∀µ ∈ M. Thus, U(µ0, y) is a uniform
equilibrium.

1.4.2 Theorem 2

This theorem provides the converse inclusion to Theorem 1 under the following assumption.

Assumption A There exist non-negative numbers (αs)s∈S, with
∑

s∈S\{s} αs ≤ 1 (for every

s ∈ S), such that p(s′|s) = αs′ whenever s′ 6= s.

Theorem Suppose that Assumption A holds. Then,

UEQ ⊂ E(M) (1.13)

Proof Consider a uniform equilibrium payoff (γ1∗ , γ
2
∗) of the game. Choose a sequence

εm > 0 which converges to 0. We can define a sequence of strategies (σm, τm) and δm such that
for δ ≥ δm the strategy (σm, τm) is εm-optimal. From the definition of uniform equilibrium we
have lim

m→∞
γδm(σm, τm) = γ∗. Let us define the stationary strategy of the receiver ym(b | s) as

follows:

ym(b | s) =
1

m(s)
Eσm,τm [

∞∑
n=1

(1− δm)δn−1m 1{sn=s,bn=b}] =

Eσm,τm [
∞∑
n=1

(1− δm)δn−1m 1{sn=s,bn=b}]

Eσm,τm [
∞∑
n=1

(1− δm)δn−1m 1{sn=s}]

By construction, we have γδm(σm, τm) = U(µ0, ym).

γδm(σm, τm) = (1− δm)
∞∑
n=1

δn−1m Eσm,τm [u(sn, bn)] = (1− δm)
∞∑
n=1

δn−1m

∑
s∈S,b∈B

Eσm,τm [1{sn=s,bn=b}]u(s, b)

=
∑

s∈S,b∈B

u(s, b)m(s)ym(b | s) = U(µ0, ym)

We define y(b | s) as a limit point of ym(b | s) when m → ∞(εm → 0). This way we get
(γ∗1 , γ

∗
2) = lim

m→∞
γδm(σm, τm) = lim

m→∞
U(µ0, ym) = U(µ0, y).

12



Since the distribution of sn is equal to m for each stage n ∈ N, we have that γ2δm ≥ v2− εm.
Taking the limit we get γ2∗ ≥ v2. So, condition C2 holds.

Now, for a given µ ∈M, we define a sequence of strategies (σ′m, τm) such that γδm(σ′m, τm) =
U(µ, ym) ∀m ∈ N. We can construct such a sequence using the idea of fictitious states. The
sender generates a sequence tn of states, which has the same distribution as the sequence sn.
The sequences sn and tn are statistically indistinguishable and the joint distribution (sn,tn) is
given by µ. Replacing the states sn with tn in the sender’s strategy σ gives us the new strategy
σ′. The existence of such a sequence is given by the lemma below:

Lemma Assume Assumption A and let µ ∈ M be given. There exists S-valued process tn
such that following hold

H1 Conditional on sn, the vector (t1, ..., tn) is independent of the future states (sn+1, sn+2..).
H2 The law of the sequence tn is the same as the law of the sequence sn.
H3 The law of the pair (sn, tn) is µ for each stage n ∈ N.
H4 The conditional law of sn given t1, ..., tn is µ(· | tn).

γδ(σ
′, τ) =

∑
s,t,b

µ(t | s)µ(t)y(b | t)u(s, b) = U(µ, y) (1.14)

Now, using the result above, we get the following result:

γ1δm(σm, τm) ≥ γ1δm(σ′m, τm)− εm ∀m ∈ N (1.15)

U1(µ0, ym) ≥ U1(µ, ym)− εm ∀m ∈ N (1.16)

lim
m→∞

U1(µ0, ym) = U1(µ0, y) ≥ U1(µ, y) = lim
m→∞

U1(µ, ym) (1.17)

The inequality (1.15) follows from the definition of uniform equilibrium. Combining this
inequality with (1.14) gives us (1.16). Taking the limit, we get (1.17). Thus, condition C1 is
also satisfied. Hence, we have proved that under Assumption A, UEQ ⊂ E(M).

13



Chapter 2

Model with imperfect monitoring

In this chapter, we consider the model where the sender does not observe the action of the
receiver but rather observes an action dependent signal. The mapping ψ : B → ∆M maps each
action b of the receiver to a mixed signal. The sender only observes the signal. As seen in the
original model, the equilibrium strategies rely heavily on monitoring. We try to investigate the
effect of imperfect monitoring and try to characterize the set of uniform equilibrium for this
model.

At each stage n, the game is in the state sn. The sender is aware of the true state and sends
a message an ∈ A to the receiver. The receiver, who does not know the true state, takes an
action bn ∈ B. The players get stage payoff u1(sn, bn) and u2(sn, bn) respectively. The sender
does not observe the action of the receiver but a signal mn is randomly chosen according to
mapping ψ. The signal mn is publicly observed. The game then moves to the next stage sn+1

according to the transition matrix P (sn+1 | sn). The state process again follows a Markov
chain, which is irreducible and aperiodic, with unique invariant measure m.

2.1 Examples

In this section we describe examples highlighting the changes signalling brings. We give insights
to why certain payoffs in E(M) will not be a equilibrium in the signaling game.

Example:

Receiver

L M R

s0 1, 1 0, 0 0, 0

States s1 0, 0 1, 0 0, 1

s2 0, 0 0, 1 1, 0

We use the payoff matrix from the game introduced in the previous section. Consider
the blind game, where the sender receives no information on the receiver’s action. We have
ψ(b) = m0 ∀b ∈ B. Assume that all states are chosen independently with probability 1

3
in

every stage.

14



Consider the payoff (1, 1
3
), which is an equilibrium payoff in the model with perfect moni-

toring. This can only be achieved when the sender truthfully reports the states and receiver
plays the strategy y1(s0) = L, y1(s1) = M, y1(s2) = R. Our claim is that this cannot be an
equilibrium payoff in the blind game. As alternatively, the receiver can deviate and play R
at s1 and M at s2 without being detected by the sender. This is a profitable deviation for
the receiver. Hence, (1, 1

3
) is not an equilibrium payoff of the blind game. Notice that (1, 1

3
)

will also not be an equilibrium payoff in the imperfect monitoring game where the signalling
mechanism is given by ψ(L) = l, ψ(M) = ψ(R) = m+r

2
.

Also, notice that unlike the equilibrium in the original game, where we could construct
a strategy where the sender’s best response was to speak the truth most of the time, it is
not the case now. There may be scenarios where it is wise for the sender to only partially
reveal. Consider the following stationary strategy: σ(s0) = ŝ0, σ(s1) = σ(s2) = ŝ1+ŝ2

2
and

y(s0) = L, y(s1) = y(s2) = M+R
2

. This corresponds to the payoff (2
3
, 2
3
). Here the sender only

reveals whether the state is s0 or not. Notice that this is an equilibrium in the blind game. It’s
not profitable for the sender to misreport s0 as the receiver is playing the best response possible.
And any exchange between s1 and s2 does not change the sender’s payoff. This payoff belongs
to the set of equilibrium payoffs E(M) of the original model. But in the blind game, this
cannot be achieved by the truth telling strategy of the sender. Because then the receiver could
play his best response in each state to get the payoff (1

3
, 1) without being detected by the sender.

Using such “partial revelations” we can construct multiple equilibria where it is not beneficial
for the sender to speak the truth most of the time. These equilibria payoff also belong to E(M)
but in the original model the payoff could be achieved by a truth telling strategy.

2.2 Characterization

Consider M ⊂ ∆(S × A) such that the marginal distributions S and A are equal to m,
the invariant measure of the Markov chain. Given a copula µ ∈ M and stationary strategy
y : A→ ∆B we set:

U(µ, y) =
∑

s∈S,a∈A

µ(s, a)u(s, y(· | a)) ∈ R2

This corresponds to the expected payoff when the sender and receiver use stationary strate-
gies given by µ and y respectively. We shall characterize the limit equilibrium payoffs using
this function.

Denote by S(M), the payoff vectors U(µ, y) that satisfy

D1. U1(µ, y) ≥ U1(µ′, y) ∀µ′ ∈M

D2. y = argmax
y′

{U2(µ, y′)| ψ(y | s) = ψ(y′ | s) ∀s ∈ S}

The equilibrium strategies in the original model, where the sender observes the receiver’s
action, were based on players able to monitor each others actions. The players could then check
if the other player is deviating from his prescribed strategy. To devise optimal strategies of
this model, we will have to use techniques for imperfect monitoring. The sender, instead of
checking for the distribution of actions played in an interval, checks the distributions of signals.
Depending on ψ, different actions could generate the same distribution of signals. We refer to
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actions inducing the same distribution of signals as being equivalent. So, if a player deviates
to an equivalent action, it is undetectable. Extending the definition introduced in [4], we say
two mixed strategies y and y

′
are equivalent if ψ(y | s) = ψ(y

′ | s) ∀s ∈ S. We need the
equivalence across all states because the sender can check the distribution of signals for each
state s ∈ S. Between two equivalent actions, a player chooses at equilibrium the one that yields
the highest stage payoff. This is the basis for the condition D2.

In the original model, any equilibrium payoff could be achieved by a stationary strategy
y of the receiver and the truth telling strategy of the sender. This was due to condition C2
being lenient . But now due to condition D2, we have a rather restrictive set and have to look
at a more generalized condition D1. We now check if the copula µ ∈ M, not necessarily µ0,
achieves the best payoff for the sender when the receiver uses the stationary strategy y.

2.3 Results

In this section, we consider the blind game, where the sender does not observe the actions of
the receiver and has no way to check if the receiver is sticking to his prescribed strategy τ .
We only informally prove one side of inclusion, i.e, S(M) ⊂ UEQ. For the blind game, the
condition D1 and D2 translate to:

G1 U1(µ, y) ≥ U1(µ′, y) ∀µ′ ∈M

G2 y = argmax
y′

{U2(µ, y′)}

We construct strategy profile (σ, τ) that achieves the payoff U(µ, y) and then show that it
is a uniform equilibrium. The set of stages are divided into consecutive blocks of constant size
N . The sender’s strategy σ is to report the states according to µ(a | s). The receiver’s strategy
τ is to play the stationary strategy y(b | a) as long as the sender does not cross the quota of
announcements. We again use fictitious states θ so that in each block the joint distribution of
states and announcements is a copula µ ∈ M. The sender cannot monitor the actions of the
receiver and thus there is no punishment phase. As the receiver’s strategy is stationary and
the strategy profile is periodic after N stages, we have lim

δ→1
γδ(σ, τ) = U(µ, y).

Now, we prove there are no profitable deviations. Consider any strategy σ
′

of the sender.
Using the definition of µδ

σ′ ,τ
from (1.10), we have γδ(σ

′
, τ) = U(µδ

σ′ ,τ
, y). From condition G1 we

have U1(µ, y) ≥ U1(µ
′
, y) ∀µ′ ∈ M. So, there is no profitable deviation of the sender. Now,

consider the receiver’s strategy τ
′
. we define yδ as follows:

yδ(b | a) =
1

m(a)
Eσ,τ ′ [

∞∑
n=1

(1− δ)δn−11{θn=a,bn=b}]

Choosing a large N , we have the reported and fictitious states matching almost surely. So,
we can then show that γδ(σ, τ

′
) = U(µ, yδ). Using condition G2, it is easy to see that this

will not be a profitable deviation. So, we have that U(µ, y) is an equilibrium payoff. Thus,
S(M) ⊂ UEQ for the blind game.
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2.4 Conclusion

In this report, we describe a dynamic version of the sender-receiver game. We characterize
the equilibrium payoffs and construct optimal strategies that achieve the payoff vector. These
strategies heavily rely on monitoring. We see this explicitly when we consider the model with
imperfect monitoring. We show the impact of monitoring by considering the extreme case: the
blind game, where the sender does not get any information on the receiver’s action. We also
provide insight into what changes are needed in the construction of the equilibrium strategies
in this model and provide an informal proof to construct them.
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