Homologie persistante

Mercredi 5 décembre 2018 10:30-11:30 - Raphaël Tinarrage

Résumé : Soit X un sous-ensemble fini d’un espace euclidien, donné par le résultat d’une expérience scientifique. Si l’on croit que X cache une structure topologique intéressante (par exemple s’il est proche d’une sous-variété M) et que l’on essaye de la comprendre, alors on dit que l’on fait de l’Analyse Topologique des Données. Plutôt que de reconstruire (au type d’homotopie près) la sous-variété sous-jacente M à partir de X (procédure instable et difficile en grande dimension), la théorie de l’homologie persistante permet d’estimer l’homologie (singulière) de M à partir de X, à travers ce que l’on appelle le diagramme de persistance de X. J’expliquerai dans cet exposé le formalisme algébrique dans lequel s’exprime cette théorie, avec des exemples de nature topologique.
Persistent homology
Let X be a finite subset of a Euclidean space, resulting from a scientific experiment. If one thinks that X hides an interesting topological structure (e.g. X is close to some submanifold M) and tries to understand it, then we say that one is doing Topological Data Analysis. Instead of reconstructing the homotopy type of the underlying submanifold M from X (unstable procedure and difficult in high dimension), the theory of persistent homology gives a way to estimate the (singular) homology of M from X, through what is called the persistence diagram of X. In this talk I will develop the algebraic setting of this theory, with topological examples.

Lieu : Bâtiment 307, salle 3L8

Homologie persistante  Version PDF