Familles de formes modulaires de Picard et groupes de Selmer

Mardi 9 octobre 2018 15:30-16:30 - Valentin Hernandez - LMO

Résumé : Il y a une quinzaine d’années, Bellaïche et Chenevier ont montré comment utiliser les familles de formes automorphes pour obtenir des cas particuliers de la conjecture de Bloch-Kato. Cette méthode nécessite de déformer certaines représentations automorphes (non-tempérées) à l’aide de variétés de Hecke, et d’étudier la représentation galoisienne portée par celles-ci. Lorsque l’on s’intéresse à un caractère de Hecke d’un corps quadratique imaginaire, et que la fonction L complexe de celui-ci a pour signe -1 au centre de son équation fonctionnelle, Rogawski a construit une telle représentation automorphe pour le groupe U(3), et en utilisant la variété de Hecke pour U(3), Bellaïche et Chenevier construisent une extension (non triviale) dans le groupe de Selmer associé. Lorsque le signe est +1 (mais que la fonction L s’annule), la représentation construite par Rogawski est automorphe pour le groupe U(2,1). Grâce aux constructions géométriques récentes, on peut alors déformer p-adiquement cette représentation et obtenir un résultat similaire dans ce cas aussi. Dans cet exposé j’essaierai d’expliquer (sous une petite hypothèse sur p) comment construire des variétés de Hecke pour U(2,1), en particulier lorsque p est inerte, et comment faire fonctionner la méthode précédente à ce cas.

Lieu : 3L15 bâtiment 307

Familles de formes modulaires de Picard et groupes de Selmer  Version PDF