Cubic fourfolds, noncommutative K3 surfaces and stability conditions

Mardi 11 juin 14:15-15:15 - Paolo Stellari - Milan et IHES

Résumé : We study stability conditions on the Kuznetsov components of
the derived categories of cubic fourfolds and we discuss the geometry
of moduli spaces of stable objects in these subcategories. We use this
to generalize results of Addington-Thomas and Huybrechts about cubic
fourfolds and to study the rich hyperkaehler geometry associated to
these hypersurfaces with an application to the Torelli theorem. This
is the content of joint works with Arend Bayer, Howard Nuer, Martí
Lahoz, Emanuele Macrì and Alex Perry.

Lieu : salle 3L15 bâtiment 307

Cubic fourfolds, noncommutative K3 surfaces and stability conditions  Version PDF