Convergence de martingales pour la marche aléatoire branchante

Mercredi 9 janvier 10:30-11:30 - Pierre Boutaud

Résumé : Au temps n=0, une unique particule (ancêtre) se trouve en une position x fixée, au temps n+1, chaque particule vivante meurt et donne naissance (indépendamment vis-à-vis de ses frères et soeurs) à un nombre aléatoire de particules à des positions aléatoires : on dit qu’il y a branchement. Ce procédé génère une marche aléatoire indexée par un arbre : la marche aléatoire branchante. La marche aléatoire branchante et son analogue continu, le mouvement brownien branchant, sont en interface avec la biologie et la physique via l’étude de la génétique des populations, les processus à fragmentation ou encore le chaos multiplicatif gaussien.
Dans cet exposé nous commencerons par donner une définition rigoureuse de la marche aléatoire branchante, puis après quelques brefs rappels sur les martingales nous étudierons la convergence de la martingale additive dans des cadres divers et les conséquences de cette convergence.
Martingale convergence in the branching random walk
At time n=0 strat with a unique ancestor particle at fixed position x, then at time n+1 every existing particle die and give birth to a random number of particles at random positions (at each generation, the reproduction events are independent) : we say there is a branching. This creates a random walk indexed by a tree : the branching random walk. The branching random walk and its continuous counterpart, the branching brownian motion, appears in subjects at the interface with biology or physics as genetics of populations, fragmentation processes or gaussian multiplicative chaos. In this talk, we will start by giving a rigourous definition of the branching random walk, then after some quick reminders about martingales, we will study the convergence of the additive martingale in different settings and the impact of such convergences.

Lieu : Bâtiment 307, salle 3L15

Convergence de martingales pour la marche aléatoire branchante  Version PDF