Constant scalar curvature Kähler metrics with cone singularities and Futaki invariant

Mardi 20 février 14:00-15:00 - Yoshinori Hashimoto - Aix-Marseille Université

Résumé : Kähler metrics with cone singularities along a divisor attracted much attention, particularly as they were used in the recent breakthrough in Kähler-Einstein metrics. As opposed to the Kähler-Einstein case in which techniques from pluripotential theory are available, many problems remain open for constant scalar curvature Kähler (cscK) metrics with cone singularities. In this talk, we construct new examples of conically singular cscK metrics and clarify its relation to algebraically defined Futaki invariant, giving a supporting evidence for the logarithmic version of the Yau-Tian-Donaldson conjecture.

Lieu : IMO ; salle 3L8.

Constant scalar curvature Kähler metrics with cone singularities and Futaki invariant  Version PDF
août 2018 :

Rien pour ce mois

juillet 2018 | septembre 2018