Complétion de matrices à structure

Jeudi 11 octobre 14:00-15:00 - Olga Klopp - ESSEC et CREST

Résumé : Nous étudions les problèmes de l’estimation matricielle et de la complétion de matrice dans un cadre général. Le modèle général englobe plusieurs cas particuliers connus tels que le modèle de mélange gaussien, le modèle « mixed membership », le modèle « bi-clustering » et l’apprentissage de dictionnaires. Nous obtenons les vitesses de convergence optimales au sens minimax pour l’estimation de la matrice de signal en norme de Frobenius et en norme spectrale. Comme conséquence du résultat général, nous obtenons des taux de convergence minimax dans divers modèles particuliers.
C’est un travail en collaboration avec Yu Lu, Alexandre B. Tsybakov et Harrison H. Zhou.

Lieu : salle 3L15

Complétion de matrices à structure  Version PDF