Bornes effectives pour les unités singulières

Mardi 28 novembre 2017 14:15-15:15 - Yuri Bilu - Université de Bordeaux

Résumé : On appelle le « module singulier » l’invariant j d’une courbe elliptique à multiplication complexe. Un module singulier est toujours un entier algébrique. En 2011 Masser a posé la question suivante : un module singulier peut-il être une unité ?
En 2015 Habegger a démontré qu’il ne peut exister qu’un nombre fini de ces « unités singulières ». C’était un cas particulier de son « Théorème de Siegel pour les points CM ». Malheureusement, la preuve n’est pas effective, parce que le zéro de Siegel est impliquée (par l’application du Théorème d’équipartition de Duke).
Dans ce travail, en commun avec Philipp Habegger et Lars Kühne, nous obtenons une borne totalement explicite : si D=df^2 est un discriminant d’un ordre imaginaire quadratique dont le module singulier correspondant est une unité, alors |D|<10^15.

Lieu : Bât. 425, salle 117-119

Bornes effectives pour les unités singulières  Version PDF