Billards linéaires et relations lagrangiennes

Lundi 19 mars 10:15-11:45 - Jacques Féjoz - IMCCE & Paris-Dauphine

Résumé : On considère une dynamique non-déterministe de billard linéaire, motivée par la limite des hautes énergies du problème des N corps. Une trajectoire est une courbe polygonale par morceaux, qui se réfléchit sur un nombre fini de sous-espaces vectoriels de l’espace euclidien, à vitesse et quantité de mouvement constantes. L’itinéraire d’une trajectoire est la suite des sous-espaces de collision. Dans une série d’articles remarquables, Burago-Ferleger-Kononenko ont démontré que tout itinéraire est non seulement fini, mais de longueur uniformément bornée pour un billard linéaire donné. Leur démonstration utilise des arguments de géométrie non-lisse. Combinant leur construction avec des idées de géométrie symplectique, nous montrons que l’espace des trajectoires d’itinéraire donné est une relation lisse lagrangienne, sur l’espace des droites affines de l’espace euclidien. Ceci est une collaboration avec Andreas Knauf et Richard Montgomery.

Lieu : salle 3L8

Billards linéaires et relations lagrangiennes  Version PDF