Modules de Breuil—Kisin—Fargues relatifs

Mardi 20 novembre 2018 14:15-15:15 - Matthew Morrow - IMJ

Résumé : Pour tout schéma lisse X sur l’anneau des entiers d’un corps p-adique, nous introduisons la notion d’un « module de Breuil—Kisin—Fargues relatif » M sur X. Un tel M encode à la fois un module sur X muni d’une connexion plate, un cristal au sens de la cohomologie cristalline sur la fibre spéciale de X et un Z_p-faisceau lisse-étale sur la fibre générique de X. Des exemples proviennent notamment du travail de Faltings en théorie de Hodge p-adique entière et de sa théorie des petites représentations galoisiennes généralisées. La première partie de l’exposé sera consacrée à une introduction de la théorie de Hodge p-adique. Travail en commun avec Takeshi Tsuji.

Modules de Breuil—Kisin—Fargues relatifs  Version PDF