Asymptotiques des états isotropes en quantification holomorphe

Mardi 15 mai 2018 14:00-15:00 - Louis Ioos - IMJ-PRG

Résumé : Une quantification est un procédé qui à partir d’un système classique, ici une variété symplectique, fournit les espaces d’états quantiques correspondants. En quantification géométrique réelle, les états quantiques sont représentés par certaines sous-variétés isotropes, tandis qu’en quantification holomorphe d’une variété kählérienne, les états quantiques sont les sections holomorphes d’un fibré en droites positif. Dans cet exposé, je ferai le lien entre ces deux contextes en donnant une définition naturelle pour ces états isotropes comme sections holomorphes via le noyau de Bergman, et étudierai leur comportement semi-classique, lorsque la puissance tensorielle du fibré en droite tend vers l’infini.

Lieu : IMO ; salle 3L8.

Asymptotiques des états isotropes en quantification holomorphe  Version PDF