A coisotropic non-squeezing theorem in symplectic geometry

Vendredi 19 octobre 2018 15:30-16:30 - Jaime Bustillo - ENS Paris

Résumé : I will explain how generating functions and Viterbo’s capacities can be used to prove a coisotropic non-squeezing theorem for Hamiltonian diffeomorphisms of $\mathbbR^2n$ generated by sub-quadratic Hamiltonians H. We will then see the relation of this theorem with the middle dimensional symplectic rigidity problem. If I have time, I will briefly explain how this type of rigidity appears in the context of Hamiltonian PDEs or $C^0$ symplectic geometry.

Lieu : Université de Nantes, Laboratoire de Mathématiques Jean Leray, salle Eole

A coisotropic non-squeezing theorem in symplectic geometry  Version PDF