Prochainement

Pas d'événement prévu ce mois

Passés
(Vidéos disponibles en ligne)

Lundi 12 mars 16:00-17:00 Timothy Gowers (Université de Cambridge, Fondation des Sciences Mathématiques de Paris)
Les théorèmes inverses dans la combinatoire additive

Plus d'infos...

Lieu : Amphi de l'IMO

Résumé : Un théorème direct sur un ensemble d’entiers utilise la definition et la structure de l’ensemble pour obtenir des propriétés interessantes. Par exemple, le théorème de Lagrange, selon lequel tout entier positif est la somme de quatre carrés parfaits, est de ce genre. En revanche, un théorème inverse commence avec les propriétés d’un ensemble : le but est alors de découvrir la structure sous-jacente qui explique ces propriétés. Il y a plusieurs théorèmes inverses assez surprenants qui jouent un rôle très important dans la combinatoire additive.

Les théorèmes inverses dans la combinatoire additive  Version PDF

Lundi 13 novembre 2017 14:00-15:00 Sophie Grivaux (Laboratoire Paul Painlevé, Université de Lille)
Exposé reporté ! (Systèmes dynamiques linéaires)

Plus d'infos...

Lieu : Petit Amphi, Bâtiment 425

Résumé : Un système dynamique linéaire est la donnée d’un couple (X,T), où X est un espace de Banach de dimension infinie et T est un opérateur linéaire borné sur X. De tels systèmes peuvent être considérés tant du point de vue de la dynamique topologique (comportement des orbites, chaos...), que du point de vue de la dynamique mesurable (existence de mesures de probabilité T-invariantes non-triviales, ergodicité, mélange...), et leur étude se situe à l’interface de l’analyse fonctionnelle et des systèmes dynamiques.
Je présenterai quelques résultats frappants concernant cette classe de systèmes, ainsi que quelques applications.

Exposé reporté ! (Systèmes dynamiques linéaires)  Version PDF

Lundi 18 septembre 2017 14:00-15:00 Amaury Lambert (UPMC et Collège de France)
Arbres ultramétriques et applications

Plus d'infos...

Lieu : Bât. 425, Petit Amphi

Résumé : Les arbres ultramétriques sont les arbres dont les feuilles se trouvent
toutes à la même distance de la racine. Ilssontutilisés pour modéliser
la généalogie d’une population de particules coexistant au même instant.
Nousmontrerons comment la frontière d’un arbre ultramétrique, comme
n’importe quel espace ultramétrique compact, peut être représentéede
façon simple via la métrique dite du peigne. Nous donnerons plusieurs
exemples de peignes aléatoires etexpliquerons de quelle manière ils
peuvent être utilisés dans les applications. En particulier, nous
examinerons certains résultatsconcernant la structure génétique de la
population en présence de mutations poissonniennes neutres sur le
squelette del’arbre.

Arbres ultramétriques et applications  Version PDF

août 2018 :

Rien pour ce mois

juillet 2018 | septembre 2018